Supporting Information

Sulfur-Inserted Polymer-Anchored Edge Exfoliated Graphite for

Durable Positive Electrode for Lithium-Sulfur Batteries

Nanami Uesugi¹, Natsuho Kazahaya¹, Koki Yamada¹, Seiya Kojo¹, Hiroshi Yoshitani², Takuya Wada², Hiroji Fukui², Shoji Nozato², Yu Katayama¹*, and Hiromori Tsutsumi¹

¹ Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan

² Advanced Technology Institute, Corporate R&D Center, Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka 618-0021, Japan

Classification	Sulfur loading / wt.%	Initial capacity / mAh g ⁻¹	Capacity retention / %	Sulfur loading method
Mesoporous carbon-S ^[1]	50	1200	60@1 C, 100th cycle	Sulfur melt adsorption
Hollow carbon sphere-S ^[2]	64	1020	68@0.1 C, 100th cycle	400°C heat treatment
CNT-S ^[3]	75	1560	47@0.2 C, 150th cycle	Sulfur melt adsorption
Graphene-S ^[4]	70(before annealing)	750	69@0.2 C, 100th cycle	Emulsion: Na ₂ S ₂ O ₃ + Triton-X100 + HCl
Carbon black-S ^[5]	64.7	1220	68@0.1 C, 50th cycle	/

Table S1 Summary of the sulfur loading, initial capacity, capacity retention, and the sulfur loading methods of the state-of-the-art positive electrodes.

	Electrical conductivity / S cm ⁻¹	
KB	15.16	
G	466.4	
ExG	1777	
PPG-EExG	240.7	

Table S2 Electrical conductivity of KB, G, ExG, and PPG-EExG.

Table S3 Brunauer-Emmett-Teller (BET) surface area of KB, G, ExG, and PPG-EExG.

	BET surface area / $m^2 g^{-1}$		
KB	1226		
G	7.256		
ExG	27.34		
PPG-EExG	151.5		

Table S4 Mass loading of sulfur on the cathode, catalyst loading, and sulfur content calculated from TG curve for the catalyst in this study.

	Mass loading of Sulfur / mg	Mass of catalyst / mg	Sulfur content / wt.%
PPG-EExG-S(Mix)	1.267	1.75	72
G-8 (Mix)	1.867	2.73	69
EG-S (Mix)	2.267	3.43	66
PPG-EExG-S (Chem)	0.607	0.90	67
G-S (Chem)	1.15	1.80	64
EG-S (Chem)	1.992	2.90	68
KB-S (Chem)	1.742	2.60	67

Figure S1 Thermogravimetric curves for PPG-EExG and PPG-EExG-S(chem) obtained under He atmosphere at a heating rate of 20° C min⁻¹. Weight loss observed above 500° C corresponds to the decomposition of the PPG anchor.

Figure S2 Gas chromatography-mass spectroscopy (GC-MS) curves for M/S = 64 of pure electrolyte (1 M LiTFSA in DME/DOL solution with 0.1 M LiNO₃ additive), G-S, G-0.3 M Li₂S₈ (0.3 M Li₂S₈ in 1 M LiTFSA in DME/DOL solution impregnated graphite electrode), and Li₂S₂. The corresponding thermogravimetric curve is also shown.

Figure S3 Gas chromatography-mass spectroscopy (GC-MS) curves for M/S = 64 of KB-S before and after the initial discharge process. Galvanostatic discharge measurements were performed in the potential range of 1.7–2.2 V at 30 °C. The corresponding discharge curve is shown in the inset.

References:

- [1] Schuster, J. et al. Angew. Chem. Int. Ed. 2012, 51, 3591–3595.
- [2] Zhang, C. et al. Angew. Chem. Int. Ed. 2012, 51, 9592.
- [3] Zheng, G. et al. Nano Lett. 2011, 11, 4462.
- [4] Wang, H. et al. Nano Lett. 2011, 11, 2644.
- [5] Li, K. et al. J. Power Sources. 2012, 202, 389.