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SUPPLEMENTARY INFORMATION

1. Synthesis and Characterization 
General remarks: reagents and solvents were purchased at the highest commercial quality and used without further purification. 3,6-Bis(5-
bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 11 and 2-[5-(6-bromohexyl)thiophen-2-yl]-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane 22 were prepared according to a literature procedures.  2-(5-Hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 
was purchased from Sigma-Aldrich.  DPP4T-CH2SAc was synthesized via Suzuki-Miyaura coupling reaction between 2 and 1 (Scheme S1a). The 
cross-coupling reaction, leading to intermediate 3, was performed in toluene at 100°C in the presence of 4% amount of Pd(PPh3)4 as the palladium 
source, aqueous sodium carbonate as the base and n-Bu4NCl as the phase-transfer catalyst. The subsequent displacement of bromine atoms by 
treatment with potassium thioacetate provided the DPP4T-CH2SAc in 66% yield. A similar approach based on the coupling between 4 and 1 yielded 
DPP4T-CH33 in one step in 53% yield (Scheme S1b). 

Scheme S1: Synthetic route to a) DPP4T-CH2SAc, and b) DPP4T-CH3.
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Preparative column chromatography was carried out using Macherey-Nagel silica gel (60, particle size 0.063-0.2 mm). Macherey-
Nagel aluminum sheets with silica gel 60 F254 were used for TLC analyses. All new compounds were characterized by 1H-NMR, 13C-
NMR and LC-MS analysis. 1H-NMR and 13C-NMR spectra were on a Varian Inova at 400 and at 100.6 MHz, respectively, by using the 
residual proton peak of CDCl3 at  = 7.26 ppm as internal standard for 1H spectra and the signals of CDCl3 at  = 77.16 ppm as internal 
standard for 13C spectra. High-resolution mass spectra were acquired with a Shimadzu high-performance liquid chromatography ion 
trap time of flight (LC-IT-TOF) mass spectrometer via direct infusion of the samples. IR spectra were recorded with a Perkin–Elmer 
FTIR Spectrometer. Melting points were determined on a Stuart Scientific Melting point apparatus SMP3.

3,6-bis(5'-(6-bromohexyl)-[2,2'-bithiophen]-5-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (3). An oven-dried 
Schlenk tube equipped with a magnetic stirrer and a condenser was evacuated and backfilled with nitrogen (3 times). Then it was 
charged, under nitrogen, with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione1 (0.249 g, 
0.365 mmol), Pd(PPh3)4 (17 mg,  0.015 mmol), n-Bu4NCl (22 mg, 0.08 mmol), a solution of 2-[5-(6-bromohexyl)thiophen-2-yl]-4,4,5,5-
tetramethyl-1,3,2-dioxaborolane2 (0.300 g, 0.804 mmol) in anhydrous toluene (9 mL) and, finally, a nitrogen degassed aqueous 
solution of 2M K2CO3 (2.8 mL, 1.40 mmol). The mixture was heated at 100 °C for 24 h and monitored via TLC for reaction completion. 
The reaction mixture was cooled to room temperature, then quenched with a saturated aqueous solution of NH4Cl (30 mL) and 
extracted with dichloromethane (3x60 mL). The organic extracts were washed with an aqueous solution of NaCl (3x30 mL), dried over 
Na2SO4 and concentrated under vacuum. The crude product was purified by column chromatography on silica gel eluting with a 
mixture of hexane, dichloromethane and diethyl ether in volumetric ratio 5:5:0.2. After washing with methanol, compound 3 was 
isolated as a greenish solid (0.144g, 39% yield). Rf = 0.60 (hexane: dichloromethane:diethyl ether 5:5:0.2). 1H NMR (400 MHz, 
CDCl3):8.90 (d, J = 4.0 Hz, 2H), 7.20 (d, J = 4.0 Hz, 2H), 7.11 (d, J = 3.6 Hz, 2H), 6.72 (d, J = 4.0 Hz, 2H), 4.07-3.94 (m, 4H), 3.39 (t, J = 
6.8 Hz, 4H), 2.81 (t, J = 7.6 Hz, 4H), 1.94-1.82 (m, 6H), 1.70 (quintet like, J ≈ 7 Hz, 4H), 1.52-1.20 (m, 24H), 0.89 (t, J = 7.6 Hz, 6H), 0.85 
(t, J = 7.2 Hz, 6H); 13C NMR (100.6 MHz, CDCl3): 161.6, 147.2, 143.2, 139.4, 136.7, 133.8, 127.5, 125.5, 124.9, 124.0, 108.1, 45.9, 
39.2, 33.8, 32.6, 31.3, 30.3, 30.1, 28.5, 28.1, 27.8, 23.7, 23.1, 14.1, 10.6;  LCMS-IT-TOF calculated for C50H66Br2N2O2S4 (M+Na)+: 
1035.2266, found: m/z 1035.2269.

S,S'-((5',5'''-(2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis([2,2'-bithiophene]-5',5-
diyl))bis(hexane-6,1-diyl)) diethanethioate (DPP4T-CH2SAc). A nitrogen-purged three-necked round bottom flask equipped with a 
magnetic stirrer and a condenser was charged, under nitrogen, with a solution of compound 3 (0.239 g, 0.235mmol) in anhydrous 
tetrahydrofuran (20 mL) and potassium thioacetate (0.057 g, 0.50 mmol). The mixture was heated at 50 °C and, after completion (5h, 
TLC analysis), was cooled to room temperature, then quenched with an aqueous solution of NaCl (30 mL) and extracted with 
dichloromethane (3x50 mL). The organic extracts were washed with an aqueous solution of NaCl (3x30 mL), dried over Na2SO4 and 
concentrated under vacuum. The crude product was purified by column chromatography on silica gel eluting with a mixture of 
hexane, dichloromethane and diethyl ether in volumetric ratio 5:5:0.5. Rf = 0.64 (hexane:dichloromethane:diethyl ether 5:5:0.5). 
After washing with hexane and subsequently with methanol, DPP4T-CH2SAc was isolated as a dark purple solid (0.156g, 66% yield). 
Mp: 120-123°C (dichloromethane/methanol). IR (KBr):max    2955, 2927, 2852, 1688, 1652, 1545, 1425, 1225, 1100, 1072, 1020, 809, 
628 cm-1; 1H NMR (400 MHz, CDCl3):8.90 (d, J = 4.0 Hz, 2H), 7.21 (d, J = 4.0 Hz, 2H), 7.11 (d, J = 3.6 Hz, 2H), 6.72 (d, J = 3.6 Hz, 2H), 
4.08-3.96 (m, 4H), 2.85 (t, J = 7.2 Hz, 4H), 2.80 (t, J = 7.4 Hz, 4H), 2.31 (s, 3H), 1.95-1.86 (m, 2H), 1.73-1.65 (m, 4H), 1.62-1.52 (m, 4H), 
1.43-1.22 (m, 24H), 0.89 (t, J = 7.8 Hz, 6H), 0.85 (t, J = 7.2 Hz, 6H); 13C NMR (100.6 MHz, CDCl3):196.0, 161.7, 147.4, 143.3, 139.4, 
136.7, 133.7, 127.5, 125.4, 125.0, 124.1, 108.2, 46.0, 39.2, 31.3, 30.6, 30.4, 30.2, 29.4, 29.0, 28.5, 28.5, 28.4, 23.7, 23.1, 14.1, 10.6; 
LCMS-IT-TOF calculated for C54H72N2O4S6 (M+Na)+: 1027.3709, found: m/z 1027.3738.

2,5-Bis(2-ethylhexyl)-3,6-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP4T-CH3).3 An oven-dried Schlenk 
tube equipped with a magnetic stirrer and a condenser was evacuated and backfilled with nitrogen (3 times). Then it was charged, under nitrogen, 
with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione1 (0.169 g, 0.25 mmol), Pd(PPh3)4 (12 mg, 0.01 
mmol), n-Bu4NCl (15 mg, 0.05 mmol), a solution of 2-(5-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.170 g, 0.58 mmol) in 
anhydrous toluene (8 mL) and, finally, a nitrogen degassed aqueous solution of 2M K2CO3 (1.3 mL, 2.60 mmol). The mixture was heated at 100 
°C for 24 h and monitored via TLC for reaction completion. The reaction mixture was cooled to room temperature, then quenched with a saturated 
aqueous solution of NH4Cl (30 mL) and extracted with dichloromethane (3x60 mL). The organic extracts were washed with an aqueous solution of 
NaCl (3x30 mL), dried over Na2SO4 and concentrated under vacuum. The crude product was purified by column chromatography on silica gel 
eluting with a mixture of hexane and dichloromethane in volumetric ratio 1:1. Rf = 0.38 (hexane:dichloromethane 1:1). After washing with hexane, 
DPP4T-CH3 was isolated as a dark purple solid (0.113g, 53% yield). Mp: 144-147°C (dichloromethane/methanol). IR (KBr):max   2952, 2922, 2852, 
1652, 1542, 1506, 1458, 1423, 1228, 1099, 1075, 1019, 803 cm-1; 1H NMR (400 MHz, CDCl3):8.90 (d, J = 4.0 Hz, 2H), 7.21  (d, J = 4.0 Hz, 2H), 
7.12  (d, J = 3.2 Hz, 2H), 6.72  (d, J = 3.2 Hz, 2H), 4.09-3.95 (m, 4H), 2.80 (t, J = 7.6 Hz, 4H), 1.97-1.86 (m, 2H), 1.68 (quintet like, J ≈ 7 Hz, 4H), 
1.42-1.20 (m, 28H), 0.94-0.82 (m, 18H);13C NMR (100.6 MHz, CDCl3): 161.6, 147.7, 143.3, 139.4, 136.7, 133.6, 127.5, 125.3, 124.9, 124.0, 
108.1, 45.9, 39.2, 31.5, 31.5, 30.4, 30.3, 28.7, 28.5, 23.7, 23.1, 22.5, 14.1, 10.6 (two coincident peaks not observed); LCMS-IT-TOF calculated for 
C50H68N2O2S4 (M+H)+: 857.4236, found: m/z 857.4268.



2. Electrochemical Characterization in Solution 

Cyclic voltammetry measurements were carried out with a Metrohm Autolab potentiostat (model PGSTAT128N) using a conventional three 
electrodes cell consisting of a platinum working electrode, a platinum counter electrode and an Ag wire coated with AgCl pseudo reference 
electrode. All CV measurements were recorded at room temperature under nitrogen atmosphere in anhydrous dichloromethane solution (scan rate 
0.05/0.1 Vs-1). The solutions were prepared as follows: a 0.1 M solution of nBu4NPF6 in anhydrous dichloromethane as supporting electrolyte was 
prepared in a glove box; the required amount of compound (DPP4T-CH3 or DPP4T-CH2SAc) was dissolved in the desired volume of nBu4NPF6 

solution and put inside the three electrodes cell. All measurements were calibrated using the Fc+/Fc redox couple as external standard. The HOMO 
and LUMO energy levels were estimated using the following empirical equations: EHOMO = e(Eox + 5.1V) and ELUMO = e(Ered +5.1V), where E is the 
average value between the peak potential and the related reverse one measured for the compounds in solution versus Fc+/Fc reference and 5.1eV 
is the position of the formal potential of the Fc+/Fc redox couple in the Fermi scale.4 The energy levels of DPP4T-CH3 or DPP4T-CH2SAc were 
measured by cyclic voltammetry in CH2Cl2 solution. Cyclic voltammograms are displayed in the Figure S1, while the corresponding electrochemical 
data are reported in the Table S2.

Figure S1: Cyclic voltammograms on a Pt working electrode in 0.1M n-Bu4NPF6/anhydrous dichloromethane at room temperature 
for DPP4T-CH3 (A) and DPP4T-CH2SAc (B).

Table S1: Electrochemical data of DPP4T-CH2SAc and DPP4T-CH3 in dichloromethane solution

Compound Eox (V)[a] Ered (V)[a] HOMO 
(eV)[b]

LUMO 
(eV)[b]

Eg
ec 

(eV)[c]

DPP4T-CH3 0.280 -1.608 -5.38 -3.49 1.89

DPP4T-CH2SAc 0.274 -1.619 -5.37 -3.48 1.89

[a] E is the average value between the peak potential and the related reverse one 
measured for the compounds in CH2Cl2 solution (10-4 M) vs Fc+/Fc reference. [b] 
HOMO and LUMO energy levels were estimated by empirical equations: HOMO = -
e(Eox + 5.1V)  and LUMO = -e(Ered + 5.1V). [c] Electrochemical band gap calculated 
from Eg = -e(Eox - Ered).4



3. UV-VIS and Fluorescence Characterization

UV Vis measurements were performed on a Shimadzu UV 2401PC spectrophotometer; PL spectra were recorded on a VARIAN Cary 
Eclipse fluorescence spectrophotometer. Spectrophotometric grade solvents were used for the preparation of samples.

Figure S2. Top: Normalized UV-vis absorption spectra of DPP4T-CH3 (A) and DPP4T-CH2SAc (B) in CHCl3, THF or toluene solution (10-

5 M). Bottom: Normalized emission spectra of DPP4T-CH3 (C) and DPP4T-CH2SAc (D) in CHCl3, THF or toluene solution (10-5 M). 

Table S2. Optical data of DPP4TH and DPP4TSAc in solution

Compound Solvent max,abs (nm) max (M-1cm-1) onset (nm) Eg (eV)[b] max,PL (nm)[c]

DPP4TH CHCl3 586, 621 5.81x104 664 1.87 655

DPP4TH Toluene 584, 624 6.49x104 663 1.87 655

DPP4TH THF 581, 621 6.51x104 660 1.88 652

DPP4TSAc CHCl3 584, 621 5.78x104 664 1.87 655

DPP4TSAc Toluene 583, 624 6.45x104 663 1.87 653

DPP4TSAc THF 580, 620 6.60x104 660 1.88 650

[a] 10-5 M solution. [b] Eg = 1240/onset. [c] Excitation wavelength 599 nm.

4. Film Preparation and Characterization

Films of DPP4T-CH3 and DPP4T-CH2SAc were deposited on square quartz substrates (1 cm x 1 cm) by spin-coating (1000 rpm for 60 
s). Solutions were prepared in different solvents (typically chloroform, chlorobenzene, o-xylene or 1:1 mixture of chloroform and 
chlorobenzene) at the concentration of 8 mg/mL for DPP4T-CH2SAc and 4 mg/mL for DPP4T-CH3. DPP4T-CH3 exhibited poor filming 
properties, leading to extremely irregular deposition, while uniform films were obtained with DPP4T-CH2SAc. In particular, DPP4T-
CH2SAc film processed from a chloroform solution was characterized by atomic force microscopy (AFM). AFM micrographs were 
taken using a Park XE-100 SPM system microscope. Images were acquired in non-contact mode using tips (Type PPP-NCHR) on a 
cantilever of 125 μm length, about 330 kHz resonance frequency, 42 N m-1 nominal force constant and <10 nm guaranteed tip 
curvature radius. Surface areas were sampled with a scan rate of 0.5 Hz. Topographies were analyzed using the software XEI (Park 
System Corporation, version 1.8.0). Films spin-coated from chloroform were also used for the spectroscopic characterization.



5. DSC Characterization

DSC measurements were conducted under nitrogen atmosphere with a Mettler Toledo STARe system DSC. The scan rate was 10 
°C/min. Material was placed in standard Mettler aluminum crucibles; sample weights were ~ 2-3 mg for neat compounds. To avoid 
influence of thermal decomposition on the thermal data, the first heating and cooling scan loop is displayed.

6. Organic Nanoparticles (ONPs) Preparation and Characterization

ONPs of both molecules were prepared with the standard re-precipitation procedure: a 2mM solution of dye in THF was prepared 
and filtered using PTFE filters of 220 nm. 100 µL of this solution were slowly dropped in 9.9 mL of pure water (LC-MS-CHROMASOLV, 
Fluka) at room temperature under vigorous stirring (1000 rpm). A first determination of the colloidal stability was performed 
measuring the absorption spectra of the two suspensions during four weeks. Meanwhile, the size distribution of the nanoparticles 
was probed by Dynamic Light Scattering (DLS). DLS measurements were performed using a Zetasizer-Nano S from Malvern operating 
with a 4 mW He-Ne laser (633 nm wavelength) and a fixed detector angle of 173° (non-invasive backscattering geometry NIBS™) and 
with the cell holder maintained at 25 °C by means of a Peltier element. Data were collected leaving the instrument free to optimize 
the instrumental parameters (attenuator, optics position and number of runs). Usually the time autocorrelation function (ACF) of 
scattered light intensity was the average of 12-16 consecutive runs of 10 s each.

The ACF of scattered light intensity was converted into the ACF of scattered electric field. This last quantity is the Laplace transform 
of the intensity weighted size distribution function that has been retrieved using a standard regularised non-negative least squares 
analysis, operated by means of the software implemented by the manufacturer. The obtained intensity weighted size distribution 
function represents the fraction of the light intensity scattered by particles of different size.

As anticipated in the main text there are not significant changes in the intensity size distribution for the suspension of both the 
molecules. Below are reported the size distributions measured immediately after the colloid’s preparation, after 8 day and after 20 
days together with the corresponding ACF.

Figure S3. Correlogram (left) and corresponding intensity size distribution (right) for colloidal suspension of DPPT-CH3 measured 
immediately after the preparation, after 8 day and after 20 days.

Figure S4. Correlogram (left) and corresponding intensity size distribution (right) for colloidal suspension of DPPT-CH2SAc measured 
immediately after the preparation, after 8 day and after 20 days.
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Figure S5. (left) absorption spectra of DPP4T-CH3 ONPs in water at 20°C and 70°C. (middle) Absorption spectra of DPP4T-CH2SAc ONPs 
in water at different temperatures. The maximum of absorption at 660 nm increases its intensity increasing the temperature of about 
7%. (Right) Detail of the temperature dependence of the DPP4T-CH2SAc ONP maximum of absorption in the temperature range 25 -
65 °C.

7. Transmission Electron Microscopy

Transmission electron microscopy (TEM) micrographs were recorded using a Jeol JEM-1011 microscope operated at an accelerating 
voltage of 100 kV. The samples were prepared by dropping 10 µl of their water dispersion on a carbon-coated Cu grid (400 mesh), 
and letting to settle for 5 min. Then the samples were stained with a 2% (w/v) phosphotungstic acid solution by placing 10 µl of 
phosphotungstic acid on the grid for 2 min before draining off. The samples were stable under the electron beam and did not 
degraded within the typical observation time.



8. NMR spectra
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Figure S6. 1H NMR spectrum of compound 8 (400 MHz, CDCl3).

Figure S7. 13C NMR spectrum of compound 8 (100.6 MHz, CDCl3).
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Figure S8. 1H NMR spectrum of  DPP4TSAc (400 MHz, CDCl3).

Figure S9. 13C NMR spectrum of  DPP4TSAc (100.6 MHz, CDCl3).
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Figure S10. 1H NMR spectrum of  DPP4T (400 MHz, CDCl3).

Figure S11. 13C NMR spectrum of DPP4T (100.6 MHz, CDCl3).
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