Supporting Information

Two-dimension on two-dimension: Hierarchical Ni_{0.2}Mo_{0.8}N /Fedoped Ni₃N nanosheets arrays as multifunctional electrocatalysts for overall water splitting

Chen Liu, Han Zhu*, Shuanglong Lu, Fang Duan, Fangping Xu, Mingliang Du*

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

Figure S1. (a) SEM image of Fe-Ni(OH)₂/NF, (b) the nanosheet thickness distribution of Fe-Ni(OH)₂/NF, (c) SEM image of Fe-Ni₃N/NF, (d) the particle size distribution of Fe-Ni₃N/NF, (e) SEM image of Ni_{0.2}Mo_{0.8}N/NF. (f) the nanowire diameter of distribution of Ni_{0.2}Mo_{0.8}N/NF.

Figure S2. FE-SEM images of (a-c) NiMoO₄/NF, (d-f) NiMoO₄/Fe-Ni(OH)₂/NF.

Figure S3 (a) SEM image of Ni_{0.2}Mo_{0.8}N/ Fe-Ni₃N /NF, (b) the nanosheet thickness distribution of Ni_{0.2}Mo_{0.8}N/ Fe-Ni₃N/NF, (c) High resolution SEM image of Fe-Ni₃N/NF, (d) the small nanosheet thickness distribution of $Ni_{0.2}Mo_{0.8}N/Fe-Ni_{3}N/NF$.

Figure S4. XRD pattern of Fe-Ni(OH)₂/NF.

Figure S5. (a) TEM image of Fe-Ni $_3$ N/NF, (b) HRTEM image of Fe-Ni $_3$ N/NF (c) TEM image of Ni_{0.2}Mo_{0.8}N/Fe-Ni₃N/NF.

Figure S6. XPS survey of $Ni_{0.2}Mo_{0.8}N/Fe-Ni_3N/NF$.

Table S1. Comparison	of OER performance	of Ni _{0.2} Mo _{0.8} N/Fe-Ni ₃ N/NF	with oth	er non-
noble metal OER electr	ocatalysts in alkaline	conditions.		

Electrocatalyst	Electrolyte	Overpotential (mV)	Reference
Ni₃N@NC-24	1.0 M KOH	260 (10 mA·cm⁻²)	ACS Appl. Energy Mater.
			2018, 1, 6774–6780.
	1.0 M KOH	370 (10 mA·cm ⁻²)	Cryst. Growth Des. 2020, 20,
0-0334@3-10101			6321–6328.
Co-Ni ₃ N	1.0 M KOH	270 (10 mA·cm⁻²)	J. Phys. Chem. Lett. 2021, 12,
			1581-1587.
Cu ₃ N/NF	1.0 M KOH	286 (10 mA·cm⁻²)	ACS Energy Lett. 2019, 4,
			747-754
B-Ni_N ₂ _10 min	1.0 M KOH	350 (10 mA·cm⁻²)	ACS Appl. Nano Mater. 2020,
			3, 10986-10995.
Co _{1.9} Ni _{0.1} (CO ₃)(OH) ₂ /GP	1.0 M KOH	266 (10 mA·cm⁻²)	ACS Appl. Energy Mater.
			2020, 3, 7335-7344
$CuNCo_{2.4}V_{0.6}$	1.0 M KOH	232 (10 mA·cm⁻²)	Nano Lett. 2019, 19, 7457-
			7463
BGO/Ni₃N	1.0 M KOH	290 (10 mA·cm⁻²)	Nano Mater. 2020, 3, 9924-
			9930.
CoNiMoN-400 NRs	1.0 M KOH	294 (10 mA·cm⁻²)	ACS Appl. Mater. Interfaces
			2019, 11, 27751-27759
Co _{3.2} Fe _{0.8} N	0.1 M KOH	419 (10 mA·cm⁻²)	ACS Appl. Nano Mater. 2019,
			2, 5931-5941
Co ₄ N@NC-700 [[]	1.0 M KOH	257 (10 mA·cm⁻²)	ACS Energy Lett. 2020, 5,
			692-700
Ni _{0.2} Mo _{0.8} N/Fe-Ni ₃ N/NF	1.0 M KOH	266 (20 mA·cm ⁻²)	This work

Figure S7. XRD pattern of $Ni_{0.2}Mo_{0.8}N/Fe-Ni_3N/NF$ before and after OER for 50 h.

Figure S9. XRD pattern of Ni_{0.2}Mo_{0.8}N/Fe-Ni₃N/NF after HER for 50 h.

Figure S 10. XPS survey of $Ni_{0.2}Mo_{0.8}N$ /Fe- Ni_3N /NF after HER for 50 h.

Table S2. Comparison of HER performance of $Ni_{0.2}Mo_{0.8}N/Fe-Ni_3N/NF$ with other non-noble metal OER electrocatalysts in alkaline conditions.

Electrocatalyst	Electrolyte	Overpotential (mV)	Reference
Co ₃ Mo ₁ S-CC	1.0 M KOH	85 (10 mA·cm⁻²)	ACS Appl. Mater.
			40194-40203
c-MoS ₂ -C	1.0 M KOH	93 (10 mA·cm ⁻²)	Nano Lett. 2021, 21, 1848-1855
Mo ₂ N–Co _x N-5	1.0 M KOH	29 (10 mA·cm ⁻²)	J. Mater. Chem. A, 2021, 9, 8620–8629
NiP ₂ /NiSe ₂	1.0 M KOH	93 (10 mA·cm ⁻²)	Appl. Catal. B Environ., 2021 , 282, 119584
CoMoNx-500 NSAs/N	= 1.0 M KOH	200 (10 mA·cm ⁻²)	ACS Appl. Mater.
			Interfaces 2020, 12,
			29253-29263
Ni ₃ N/NF	1.0 M KOH	44 (10 mA·cm⁻²)	ACS Appl. Mater.
			Interfaces 2020, 12,
			5951-5957
Co2Ni1N	1.0 M KOH	102.6 (10 mA·cm⁻²)	ACS Appl. Mater.
			Interfaces 2019, 11, 8018-8024
C-350	1.0 M KOH	47 (10 mA·cm⁻²)	ACS Sustainable Chem.
			Eng. 2020, 8, 7414-7422
Co-Ni ₃ N	1.0 M KOH	30 (10 mA·cm⁻²)	J. Phys. Chem. Lett. 2021,
			12, 1581-1587.
NiMoN@NiFeN	1.0 M KOH	84 (10 mA·cm⁻²)	Nat.Commun., 2019,
			10, 1-10.
Ni _{0.2} Mo _{0.8} N/Fe-Ni ₃ N/N	IF 1.0 M KOH	266 (20 mA·cm⁻²)	This work

Figure S11. CV curves of (a) $Ni_{0.2}Mo_{0.8}N/NF$., (b)Fe-Ni₃N/NF and (c) $Ni_{0.2}Mo_{0.8}N/Fe-Ni_3N/NF$.