Journal: RSC Advances

Combined Mass Spectrometry-Guided Genome Mining and Virtual Screening for Acaricidal Active Secondary Metabolites of *Bacillus velezensis* W1

Xingyu Li^{a,b,‡*}, Shahzad Munir^{c‡}, Yan Xu^b, Yuehu Wang^d, Yueqiu He^{c,*}

^aCollege of Science, Yunnan Agricultural University, Kunming 650201, PRC

^bDepartment of Chemistry, Cleveland State University, Cleveland, OH 44115, USA

^cState Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China

^dKey Laboratory of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming 650201, China

*Correponding author: <u>lixingyu@ynau.edu.cn</u> (X.-Y. Li); ynfh2007@163.com (Y.-Q. He.)

[‡]Equal Contribution

Content

Figure S1. GC-MS chromatogram of petroleum ether extraction part (PO98) of the crude extract of strain W1, including S1.1: total ion chromatograph (TIC), S1.2: area percent report, and S1.3: MS spectra of identified compound and the comparison of the MS spectra of its standard products. Figure S2. GC-MS chromatogram of ethyl acetate extraction part (PO99) of the crude extract of W1, including S2.1: total ion chromatograph (TIC), S2.2: area percent report, and S2.3: MS spectra of identified compound and the comparison of the MS spectra of its standard products. .14 Figure S3. GC-MS chromatogram of acetone extraction part (PO100) of the crude extract of W1, including S3.1: total ion chromatograph (TIC), S3.2: area percent report, and S3.3: MS spectra of identified compound and the comparison of the MS spectra of its standard products......23 Figure S4 A: LC-ESI-MS spectrum and structure of the bacillomycin D C15. B: ESI-MS/MS Figure S5 A: LC-ESI-MS spectrum and structure of the bacillomycin D C16. B: ESI-MS/MS Figure S6 A: LC-ESI-MS spectrum and structure of the bacillomycin D C17......39 Table S1. Information of Known Acaricidal Compounds40 Table S2. Compounds identified from Bacillus velezensis W1 and the maximum similarity42

Figure S1. GC-MS chromatogram of petroleum ether extraction part (PO98) of the crude extract of strain W1, including **S1.1**: total ion chromatograph (TIC), **S1.2**: area percent report, and **S1.3**: MS spectra of identified compound and the comparison of the MS spectra of its standard products.

S1.1: Total Ion Chromatograph (TIC)

S1.2: Area Percent Report

Data File : C:\MSDCHEM\1\DATA\16071106.D Vial: 1 Acq On : 11 Jul 2016 17:50 Operator: Sample : P098 Inst : GCMS Misc Multiplr: 1.00 : Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\D-DDVP.M (Chemstation Integrator) Title : Signal : TIC peak R.T. first max last PK peak corr. corr. % of # min scan scan scan TY height area % max. total 1 19.639 3187 3212 3391 BB 4 22539 4921109 6.38% 3.183% 2 21.899 3555 3635 3686 PV 63739 5076274 6.58% 3.284% 3 22.235 3686 3698 3764 VB 2 40858 1649510 2.14% 1.067% 4 23.758 3901 3983 4009 BB 6 3621 251334 0.33% 0.163% 5 24.816 4015 4181 4238 BV 3 372590 77123138 100.00% 49.890% 6 25.152 4238 4244 4260 VV 9 5982 275448 0.36% 0.178% 7 25.302 4260 4272 4300 VB 9 2871 208920 0.27% 0.135% 8 26.707 4489 4535 4610 BB 5 9765 1248206 1.62% 0.807% 9 31.664 5449 5463 5472 VV 3 9904 420998 0.55% 0.272% 10 31.803 5472 5489 5540 VV 3 9119 897952 1.16% 0.581% 11 32.167 5540 5557 5576 PV 148323 3789323 4.91% 2.451% 12 33.219 5739 5754 5795 BV 3 28292 1134958 1.47% 0.734% 13 33.780 5822 5859 5869 VV 4 88560 5137624 6.66% 3.323% 14 33.865 5869 5875 5929 VV 3 37357 2387147 3.10% 1.544% 15 34.218 5929 5941 5958 PV 3 3831 222608 0.29% 0.144% 38756 3913411 5.07% 2.532% 16 34.512 5958 5996 6042 VV 17 35.084 6088 6103 6126 PV 8 6465 257646 0.33% 0.167% 18 35.495 6162 6180 6201 BV 102458 3668200 4.76% 2.373% 19 35.741 6201 6226 6255 VV 4 20582 888392 1.15% 0.575% 20 36.056 6255 6285 6313 PV 2 19559 782166 1.01% 0.506% 21 36.563 6358 6380 6393 BV 8849 240030 0.31% 0.155% 22 36.921 6424 6447 6473 VV 4369 242178 0.31% 0.157% 23 37.124 6473 6485 6513 VB 5 7918 247108 0.32% 0.160% 24 37.423 6514 6541 6575 BV 45893 1581550 2.05% 1.023% 25 37.658 6575 6585 6594 VV 2 25771 674153 0.87% 0.436% 26 37.771 6594 6606 6623 VV 38911 1236200 1.60% 0.800% 27 37.931 6623 6636 6663 VV 3 23813 948979 1.23% 0.614% 28 38.433 6708 6730 6759 PV 269532 7886157 10.23% 5.101% 29 38.957 6821 6828 6841 VV 7532 278026 0.36% 0.180% 30 39.074 6841 6850 6873 VV 6 8409 256730 0.33% 0.166% 31 41.959 7363 7390 7418 BV 4 7059 535459 0.69% 0.346% 32 42.306 7418 7455 7506 VV 280736 19836882 25.72% 12.832% 33 42.621 7506 7514 7525 VV 10 7596 317337 0.41% 0.205%

34	42.723	7525	7533	7562 \	VV 5	11490	406559	0.53%	0.263%		
35	44.438	7828	7854	7886 I	3B 4	9591	284021	0.37%	0.184%		
36	45 779	8057	8105	8138	3V 2	33010	1152655	1 49%	0 746%		
37	46.089	8152	8163	8183	VB 6	16280	516667	0.67%	0.334%		
38	48.466	8547	8608	8623 B	BV 1	6066	414358	0.54%	0.268%		
39	49.187	8672	8743	8765 B	BB 7	5256	234943	0.30%	0.152%		
40	49.668	8772	8833	8912 I	3V 7	18376	1751731	2.27%	1.133%		
41	51.37	72	9056	9152	9176	6 BV	4 42	452	1290516	1.67%	0.835%

S1.3: MS Spectra of identified Compound and the Comparison of the MS Spectra of Its Standard Products.

1. Comparison of Mass Spectra of 2-piperidinone and Its Standards

2. Comparison of Mass Spectra of Benzeneacetic Acid and Its Standards

3. Comparison of Mass Spectra of **Methyl Ester Benzenepropanoic Acid** and Its Standards

4. Comparison of Mass Spectra of Benzenepropanoic Acid and Its Standards

5. Comparison of Mass Spectra of Benzenebutanoic Acid and Its Standards

7. Mass Spectra of Cyclo (Gly-L-Pro) Dipeptide

8. Comparison of Mass Spectra of **1,2,3-Propanetricarboxylic Acid,2-Hydroxy-**,**Triethyl Ester** and Its Standards

9. Mass Spectra of Cyclo (L-Ala-L-Pro) Dipeptide

Abundance

10. Mass Spectra of Cyclo(gly-L-Val) Dipeptide

11. Comparison of Mass Spectra of Nonadecane and Its Standards

12. Comparison of Mass Spectra of **Hexadecanonic Acid**, **Methyl Ester** and Its Standards

13 Comparison of Mass Spectra of Cyclo (L-Pro-L-Pro) Dipeptide and Its Standards

15. Mass Spectra of Cyclo(Gly-L-Leu) Dipeptide

16. Comparison of Mass Spectra of Cyclo (L-Leu-L-Leu) Dipeptide and Its Standards

17. Comparison of Mass Spectra of Docosane and Its Standards

18. Comparison of Mass Spectra of Cyclo (L-Phe-L-Pro) Dipeptide and Its Standards

Figure S2. GC-MS chromatogram of ethyl acetate extraction part (PO99) of the crude extract of W1, including **S2.1**: total ion chromatograph (TIC), **S2.2**: area percent report, and **S2.3**: MS spectra of identified compound and the comparison of the MS spectra of its standard products.

S2.1: Total Ion Chromatograph (TIC)

S2.2: Area Percent Report

 Data File : C:\MSDCHEM\1\DATA\16071107.D
 Vial: 1

 Acq On
 : 11 Jul 2016 19:25
 Operator:

 Sample
 : P099
 Inst : GCMS

 Misc
 :
 Multiplr: 1.00

 Sample Amount: 0.00
 :
 :

MS Integration Params: autoint1.e

Method : C:\MSDCHEM\1\METHODS\D-DDVP.M (Chemstation Integrator) Title :

Signal : TIC

pea	ak R.T.	first n	nax la	st PK	ζρε	eal	k cor	r. corr.	% of	
#	min s	can so	can sc	can T	Υh	eig	ght ar	ea %m	ax. total	
1 2 3 4 5	13.346 15.018 15.771 19.201 19.393	1989 2300 2472 3058 3155	2034 2347 2488 3130 3166	2097 2472 2557 3155 3238	BB 4 BV 2 VB 6 BV 9 VV	4 2 5	3356 4310 2221 64462 60053	177106 670757 205971 8722569 2912780	0.59% 2.25% 0.69% 29.24% 9.76%	0.193% 0.732% 0.225% 9.525% 3.181%
6 7 8 9 10	19.821 23.475 24.201 24.549 25.125	3238 3880 4021 4118 4221	3246 3930 4066 4131 4239	3333 3965 4118 4215 4271	VB (BV PV 2 VB (BV	6 2 8 6	1901 3576 50476 3355 4662	179980 232640 3206514 329144 180168	0.60% 0.78% (10.75% 1.10% 0.60%	0.197%).254% 3.502% 0.359% 0.197%
11 12 13 14 15	31.643 32.936 33.208 33.347 33.523	5436 5661 5737 5771 5797	5459 5701 5752 5778 5811	5509 5712 5771 5797 5834	<pre>VV VV VV VV VV VV VV</pre>	3 7 9 6	20206 4274 15372 6513 5135	1430975 184078 723590 258213 258432	5 4.80% 0.62% 2.43% 0.87% 0.87%	1.563% 0.201% 0.790% 0.282% 0.282%
16	33.743	5834	5852	5882	 VV 	3	40600	1597246	6 5.35%	1.744%
17	33.967	5882	5894	5922		2	13237	559799	1.88%	0.611%
18	34.197	5922	5937	5951		4	12968	505467	1.69%	0.552%
19	34.384	5951	5972	5989		5	12675	1093597	7 3.67%	1.194%
20	34.624	5989	6017	6086		4	51366	3559247	1 11.93%	5 3.887%
21	35.083	6086	6103	6116	 VV 	8	5639	238631	0.80%	0.261%
22	35.281	6116	6140	6157		6	4587	316113	1.06%	0.345%
23	35.447	6157	6171	6199		10	3026	23314	0.78%	0.255%
24	35.965	6249	6268	6310		7	4412	302606	1.01%	0.330%
25	36.264	6310	6324	6350		7	1808	185564	0.62%	0.203%
26	36.558	6369	6379	6420	 VV VV VV VV VV VV VV VV 	5	3040	218089	0.73%	0.238%
27	36.862	6420	6436	6470		6	5501	318657	1.07%	0.348%
28	37.130	6470	6486	6507		10	5141	219740	0.74%	0.240%
29	37.664	6565	6586	6604		2	70634	2069365	5 6.94%	2.260%
30	37.835	6604	6618	6657		3	33661	1816557	7 6.09%	1.984%
31	38.112	6657	6670	6703	VV	3	3235	349993	1.17%	0.382%
32	38.428	6703	6729	6740	VV		17925	704493	2.36%	0.769%

33 34 35	38.567 38.983 39.101	6740 6819 6844	6755 6833 6855	6787 6844 6904	VV VV VV	4 9 9	9269 5112 7385	413312 184600 468842	1.39% 0.62% 1.57%	0.451% 0.202% 0.512%	
36 37 38 39 40	39.550 39.779 39.966 40.169 40.479	6929 6965 7007 7045 7082	6939 6982 7017 7055 7113	6965 7007 7045 7082 7147	VV VV VV VV	6 2	13514 65525 2664 3893 2440	595518 7613305 198700 280936 361230	2.00% 25.52% 0.67% 0.94% 1.21%	0.650% 6 8.314% 0.217% 0.307% 0.394%	
41 42 43 44 45	40.805 41.067 41.451 42.312 42.514	7147 7209 7266 7405 7478	7174 7223 7295 7456 7494	7190 7266 7322 7478 7545	 VV VV VV VV VV VV 	9 2 2 7	9550 5435 48329 4162 29234	2060894 377210 1352206 450795 2515156	6.91% 1.26% 6 4.53% 1.51% 6 8.43%	2.251% 0.412% 1.477% 0.492% 2.747%	
46 47 48 49 50	42.830 42.969 43.369 43.700 43.898	7545 7565 7632 7701 7735	7553 7579 7654 7716 7753	7565 7632 7701 7735 7768	 VV VV VV VV VV VV 	3 3 3 9 5	4169 4473 2614 5048 6341	227846 516241 341087 245518 377580	0.76% 1.73% 1.14% 0.82% 1.27%	0.249% 0.564% 0.372% 0.268% 0.412%	
51 52 53 54 55	44.101 44.432 44.748 45.079 45.298	7768 7841 7898 7955 8006	7791 7853 7912 7974 8015	7841 7867 7955 8006 8101	VV VV VV PB	5 4 4 4	5443 8003 2567 2357 2101	784710 266500 212984 183929 218808	2.63% 0.89% 0.71% 0.62% 0.73%	0.857% 0.291% 0.233% 0.201% 0.239%	
56 57 58 59 60	46.083 46.863 47.061 47.248 47.664	8144 8285 8335 8363 8439	8162 8308 8345 8380 8458	8176 8335 8363 8418 8466	PV VV VV VV	6 3 4 5	6691 11761 8329 1936 8326	225336 570823 336174 194372 277768	0.76% 1.91% 1.13% 0.65% 0.93%	0.246% 0.623% 0.367% 0.212% 0.303%	
61 62 63 64 65	47.803 48.487 49.192 49.727 50.068	8466 8589 8734 8799 8893	8484 8612 8744 8844 8908	8507 8698 8799 8893 8939	VV VV VV PV VV	5 10 9 9 7	7377 23841 6981 1442 8038	435318 2983176 309395 218794 397648	1.46% 65 100.00 1.04% 0.73% 1.33%	0.475%)% 32.577% 0.338% 0.239% 0.434%	
66 67 68 69 70	50.378 50.667 51.206 51.377 51.618	8939 9004 9071 9143 9174	8966 9020 9121 9153 9198	9004 9071 9143 9174 9231	VV VV PV VV VV	7 7 7 7 7	1721 6083 2528 9029 2491	202117 359597 374221 375074 286758	0.68% 1.21% 1.25% 1.26% 0.96%	0.221% 0.393% 0.409% 0.410% 0.313%	
71 72 73 74 75	52.082 52.339 52.574 53.039 53.333	9231 9309 9345 9411 9501	9285 9333 9377 9464 9519	9309 9345 9411 9501 9532	VV VV VV VV	7 7 7 7 7	5752 2597 4319 2326 3093	460562 182723 506750 542450 216305	1.54% 0.61% 1.70% 1.82% 0.73%	0.503% 0.200% 0.553% 0.592% 0.236%	
76 77 78 79	53.466 53.888 54.203 54.50	9532 9597 9673)2	9544 9623 9682 9731	9577 9639 9731 9738	VV VV VV 8 97	7 7 7 794	5212 2676 1535 VV	396551 257820 231316 7	1.33% 0.86% 0.78% 1491	0.433% 0.282% 0.253% 173417	0.58%

0.189%

S2.3: MS spectra of identified compound and the comparison of the MS spectra of its standard products

1. Comparison of Mass Spectra of 2-Pyrrolidinone and Its Standards

3. Mass Spectra of Cyclo (Gly-Gly) Dipeptide

4. Comparison of Mass Spectra of 1,3-Isobenzofurandione and Its Standards

6. Mass Spectra of Cyclo (Gly-L-Pro) Dipiptide

7. Mass Spectra of Cyclo (Gly-L-Ala) Dipeptide

8. Mass Spectra of Cyclo (L-Ala-L-Pro) Dipeptide

9. Comparison of Mass Spectra of **5-Hydroxy-5,6,7,8-Tetahydroquinoxaline** and Its Standards

10. Comparison of Mass Spectra of Cyclo (L-Gly-L-Leu) Dipeptide and Its Standards

12 Comparison of Mass Spectra of Cyclo (L-Pro-L-Pro) Dipeptide and Its Standards

13. Mass Spectra of Cyclo (L-Val-L-His) Dipeptide

14. Comparison of Mass Spectra of 3-(o-azidophenyl) Propanol and Its Standards

15. Comparison of Mass Spectra of Octadecanoic Acid, Mrthyi Ester and Its Standards

16. Comparison of Mass Spectra of Cyclo (L-Pro-oh-L-Pro) Dipeptide and Its Standards

Figure S3. GC-MS chromatogram of acetone extraction part (PO100) of the crude extract of W1, including **S3.1**: total ion chromatograph (TIC), **S3.2**: area percent report, and **S3.3**: MS spectra of identified compound and the comparison of the MS spectra of its standard products.

S3.2: Area Percent Report

Data File : C:\MSDCHEM\1\DATA\16071200.D Vial: 1 Acq On : 12 Jul 2016 10:26 Operator: Sample : P0100 Inst : GCMS Misc : Multiplr: 1.00 Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\D-DDVP.M (Chemstation Integrator) Title : Signal : TIC peak R.T. first max last PK peak corr. corr. % of # min scan scan scan TY height area % max. total --- ---- ---- ---- --- -----1 21.995 3560 3653 3796 BV 2 114203 14266994 77.98% 19.377% 2 24.180 4031 4062 4163 BV 6 3823 499544 2.73% 0.678% 3 32.156 5537 5555 5574 VV 33545 940478 5.14% 1.277% 4 34.186 5901 5935 5982 VV 2 107963 5850488 31.98% 7.946% 5 34.939 6067 6076 6092 VV 5 8494 347545 1.90% 0.472% 6 35.084 6092 6103 6116 VV 2 16965 529439 2.89% 0.719% 7 35.281 6129 6140 6157 VV 6 11084 506398 2.77% 0.688% 8 35.725 6213 6223 6233 VV 2 10286 326280 1.78% 0.443% 9 36.376 6333 6345 6366 VV 2 4472 311992 1.71% 0.424% 10 36.558 6366 6379 6401 VV 11748 485223 2.65% 0.659% 11 36.873 6401 6438 6444 VV 3168 328640 1.80% 0.446% 12 36.985 6444 6459 6474 VV 310102 1.70% 0.421% 4365 13 37.130 6474 6486 6497 VV 3 17868 575880 3.15% 0.782% 14 37.658 6572 6585 6607 VV 3 37274 1189972 6.50% 1.616% 15 37.974 6622 6644 6665 VV 3 3550 395756 2.16% 0.538% 16 38.433 6710 6730 6777 VV 510972 14290056 78.11% 19.408% 17 38.791 6777 6797 6817 VV 4 14824 681525 3.73% 0.926% 18 38.967 6817 6830 6841 VV 7 18210 761190 4.16% 1.034% 19 39.074 6841 6850 6861 VV 3 17815 547577 2.99% 0.744% 20 39.170 6861 6868 6905 VV 3 3472 378837 2.07% 0.515% 21 39.566 6930 6942 6962 VV 6 7005 342230 1.87% 0.465% 22 39.779 6962 6982 6995 VV 4 5506 317032 1.73% 0.431% 23 40.939 7138 7199 7244 VV 3 16979 1228089 6.71% 1.668% 24 41.452 7281 7295 7308 VV 4 12916 422474 2.31% 0.574% 25 41.601 7308 7323 7345 VV 4 14986 585876 3.20% 0.796% 26 42.627 7476 7515 7524 VV 4 21251 1667650 9.12% 2.265% 27 42.723 7524 7533 7554 VV 4 28979 1050856 5.74% 1.427% 455930 2.49% 0.619% 28 44.165 7785 7803 7825 VV 5 14031 29 44.432 7825 7853 7893 VV 3 25904 813064 4.44% 1.104% 30 46.089 8152 8163 8188 VV 5 35371 1110578 6.07% 1.508% 31 46.532 8233 8246 8258 VV 5 12995 385219 2.11% 0.523%

32 33 34 35	47.665 48.477 48.760 49.187	8440 8594 8652 8712	8458 8610 8663 8743	8467 8632 8687 8762	VV 4 VV VV 6 VV 4	19041 648241 13333 14063	567366 18294784 443997 533005	3.10% 100.00 2.43% 2.91%	0.771% % 24.847% 0.603% 0.724%		
36 37 38 39	50.662 50.849 51.372 52.81	8999 9041 9141 4	9019 9054 9152 9407	9032 9083 9167 9422	PV 6 VV 8 VV 2 2 944	9143 9562 27739 41 VV	336415 376691 837458 2 7	1.84% 2.06% 4.58% 760	0.457% 0.512% 1.137% 335887	1.84%	0.456%

S3.3: MS Spectra of Identified Compound and the Comparison of the MS Spectra of Its Standard Products.

Abundance 19.938 to 20.200 min.: 16071200.D (-) 450 m/z--> Abundance #7658: 2-Piperidinone \$\$ 2-Piperidone \$\$.alpha.-Piperidon... 01 m/z

1. Comparison of Mass Spectra of 2-Piperidinone and Its Standards

2. Comparison of Mass Spectra of Benzeneacetic Acid and Its Standards

3. Comparison of Mass Spectra of Benzenepropanoic Acid and Its Standards

4. Comparison of Mass Spectra of Etheyl Citrate and Its Standards

5. Comparison of Mass Spectra of Cyclo (Gly-L-Pro) Dipeptide and Its Standards

6. Comparison of Mass Spectra of 1-Heptadecene and Its Standards

7. Comparison of Mass Spectra of Octadecane and Its Standards

8. Comparison of Mass Spectra of **Hexadecane**, **2,6,10,14-Tetramethyl-** and Its Standards

9. Comparison of Mass Spectra of Nonadecane and Its Standards

10. Comparison of Mass Spectra of **Hexadecanonic Acid**, **Methyl Ester** and Its Standards

11. Comparison of Mass Spectra of Hexadecanonic Acid, Ethyl Ester and Its Standards

13. Comparison of Mass Spectra of Heneicosane and Its Standards

15. Mass Spectra of Cyclo (L-Pro-oh-L-Pro) Dipeptide

17. Comparison of Mass Spectra of Tricosane and Its Standards

18. Comparison of Mass Spectra of Tetracosane and Its Standards

20. Comparison of Mass Spectra of Eicosane,7-Hexyl- and Its Standards

Figure S4 A: LC-ESI-MS spectrum and structure of the bacillomycin D C15. **B**: ESI-MS/MS spectrum of the precursor ion $[M + H]^+$ at m/z 1,045.5501 with fragment ions analysis.

==== LCMSsolution Data Report ====

Acquired by Date Acquired Sample Name Data File Method File

: Admin : 2017/9/24 17:45:36 : W1 : W1.lcd : wangyuehu.lcm

System Configuration <<<Instrument>>: LC-IT-TOF

<Spectrum> Retention Time:33.298(Scan#:4192) Spectrum:Single 33.298(4192) Background:None MS Stage:MS/MS Polarity:Pos Segment1 - Event2 Precursor:1045.55 Cutoff:289

Sample Information

Figure S5 A: LC-ESI-MS spectrum and structure of the bacillomycin D C16. **B**: ESI-MS/MS spectrum of the precursor ion $[M + H]^+$ at m/z 1,059.5629 with fragment ions analysis.

Figure S6 A: LC-ESI-MS spectrum and structure of the bacillomycin D C17.

39

NO.	Name	SMILES	Formula
1	Isomate-M	000000000000000000000000000000000000000	$C_{26}H_{50}O_3$
2	(Z)-11-hexadecenal	0=2322222222=22222	$C_{16}H_{30}O$
3	Wintergreen oil	COC(=0)C1=CC=CC=C10	$C_8H_8O_3$
4	Eucalyptus oil	CC1(C2CCC(O1)(CC2)C)C	$C_{10}H_{18}O$
5	Cyromazine	C1CC1NC2=NC(=NC(=N2)N)N	$C_6H_{10}N_6$
6	Diethyltoluamide	CCN(CC)C(=O)C1=CC=CC(=C1)C	$C_4H_{13}N_3$
7	Carbofuran	CC1(CC2=C(O1)C(=CC=C2)OC(=O)NC)C	$C_{12}H_{15}NO_3$
8	Sorbitol octanoate	0(0(0(0(0))))0(2(2)))0(0(0))0)0(0)0)0	$C_{14}H_{28}O_8$
9	Methoprene	CC(C)OC(=0)C=C(C)C=CCC(C)(C)(C)OC	$C_{19}H_{34}O_3$
10	Bifenazate	CC(C)OC(=O)NNC1=C(C=CC(=C1)C2=CC=C2)OC	$C_{17}H_{20}N_2O_3$
11	Bioallethrin	CC1=C(C(=O)CC1OC(=O)C2C(C2(C)C)C=C(C)C)CC=C	$C_{19}H_{26}O_3$
12	Fenazaquin	CC(C)(C)C1=CC=C(C=C1)CCOC2=NC=NC3=CC=CC=C32	$C_{20}H_{22}N_2O$
13	Amitraz	CC1=CC(=C(C=C1)N=CN(C)C=NC2=C(C=C2)C)C)C	$C_{19}H_{23}N_3$
14	Acequinocyl	CCCCCCCCCCC1=C(C(=O)C2=CC=C2C1=O)OC(=O)C	$C_{24}H_{32}O_4$
15	Pyrethroids	CC(=CC1C(C1(C)C)C(=O)OCC2=COC(=C2)CC3=CC=C3)C	$C_{22}H_{26}O_3$
16	Spirotetramat	CCOC(=O)OC1=C(C(=O)NC12CCC(CC2)OC)C3=C(C=CC(=C3)C)C	$C_{21}H_{27}NO_5$
17	Fenpropathrin	CC1(C(C1(C)C)C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C	$C_{22}H_{23}NO_3$
18	Rotenone	CC(=C)C1CC2=C(O1)C=CC3=C2OC4COC5=CC(=C(C=C5C4C3=O)OC)OC	$C_{23}H_{22}O_6$
19	Spiromesifen	CC1=CC(=C(C(=C1)C)C2=C(C3(CCCC3)OC2=O)OC(=O)CC(C)(C)C)C	$C_{23}H_{30}O_4$
20	Fenpyroximate	CC1=NN(C(=C1C=NOCC2=CC=C(C=C2)C(=O)OC(C)(C)C)OC3=CC=CC=C3)C	$C_{24}H_{27}N_3O_4$
21	Dinocap	CCCCCCC(C)C1=CC(=C(C(=C1)[N+](=O)[O-])OC(=O)C=CC)[N+](=O)[O-]	$C_{18}H_{24}N_2O_6$
22	Spinosad	CCC1C(CCC2(O1)CC3CC(O2)CC=C(CC(C=CC=C4COC5C4(C(C=C(C5=NO)C)C(=O)O3)O)C)C)C	$C_{73}H_{110}N_2O_{17}$

Table S1. Information of Known Acaricidal Compounds

23	Allosamidin	CC(=O)NC1C(C(C(OC1OC2C(OC(C(C2O)NC(=O)C)OC3C(C4C(C3O)N=C(O4)N(C)C)CO)C O)CO)O)O	$C_{25}H_{42}N_4O_{14}$
24	Moxidectin	CC1CC(=CCC2CC(CC3(O2)CC(=NOC)C(C(O3)C(=CC(C)C)C)C)OC(=O)C4C=C(C(C5C4(C(= CC=C1)CO5)O)O)C)C	C ₃₇ H ₅₃ NO ₈
25	Spinosad	CCC1CCCC(C(C=0)C2=CC3C4CC(CC4C=CC3C2CC(=0)O1)OC5C(C(C(C(O5)C)OC)OC)OC)OC)OC)OC)OC)OC)OC)OC)OC)OC)O	$C_{73}H_{110}N_2O_{17}$
26	Pyrethrin	CC1=C(C(=0)CC1OC(=0)C2C(C2(C)C)C=C(C)C)CC=CC=C.CC1=C(C(=0)CC1OC(=0)C2C(C 2(C)C)C=C(C)C(=0)OC)CC=CC=C	$C_{43}H_{56}O_8$
27	Abamectin	CC1C=CC=C2COC3C2(C(C=C(C3O)C)C(=O)OC4CC(CC=C(C1OC5CC(C(C(O5)C)OC6CC(C(C(O6)C)C)OC)OC)C)OC7(C4)C=CC(C(O7)C(C)C)C)O	$C_{48}H_{72}O_{13}$
28	lvermectin	CCC(C)C1C(CCC2(O1)CC3CC(O2)CC=C(C(C(C=CC=C4COC5C4(C(C=C(C5O)C)C(=O)O3)O)C)OC6CC(C(C(O6)C)OC7CC(C(C(O7)C)O)OC)OC)C)C	$C_{48}H_{74}O_{14}$
29	Pheromone	CC(C)CC(C(=O)NC(CC1=CC=CC=C1)C(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(= O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NCC(=O)O)N	$C_{42}H_{70}N_8O_{10}$
30	Avermectin	CCC(C)C1C(C=CC2(O1)CC3CC(O2)CC=C(C(C(C=CC=C4COC5C4(C(C=C(C5O)C)C(=O)O3) O)C)OC6CC(C(C(O6)C)OC7CC(C(C(O7)C)O)OC)OC)C)C	$C_{48}H_{72}O_{14}$
31	Doramectin	CC1C=CC=C2COC3C2(C(C=C(C3O)C)C(=O)OC4CC(CC=C(C1OC5CC(C(C(O5)C)OC6CC(C(C(O6)C)O)OC)OC)C)OC7(C4)C=CC(C(O7)C8CCCCC8)C)O	$C_{50}H_{74}O_{14}$
32	Eprinomectin	CCC(C)C1C(C=CC2(O1)CC3CC(O2)CC=C(C(C(C=CC=C4COC5C4(C(C=C(C5O)C)C(=O)O3) O)C)OC6CC(C(C(O6)C)OC7CC(C(C(O7)C)NC(=O)C)OC)OC)C)C	C ₅₀ H ₇₅ NO ₁₄

NO.	Compound name	SMILES	maximum similarity
1	2-Pyrrolidinone	C1CC(=O)NC1	0.22
2	2-Piperidinone	C1CCNC(=O)C1	0.22
3	Octadecane	CCCCCCCCCCCCCCCC	0.25
4	Nonadecane	CCCCCCCCCCCCCCCCC	0.25
5	Bacimethrin	COC1=NC=C(C(=N1)N)CO	0.18
6	Benzeneacetic acid	C1=CC=C(C=C1)CC(=O)O	0.3
7	Benzenepropanoic acid, methyl ester	COC(=O)CCC1=CC=CC=C1	0.31
8	Eicosane	CCCCCCCCCCCCCCCCC	0.25
9	Benzenepropanoic acid	C1=CC=C(C=C1)CCC(=O)O	0.28
10	Cyclo (Gly-Pro)	C1CC2C(=O)NCC(=O)N2C1	0.37
11	Heneicosane	CCCCCCCCCCCCCCCCCC	0.25
12	Benzenebutanoic acid	C1=CC=C(C=C1)CCCC(=O)O	0.28
13	Cyclo (Ala-Pro)	CC1C(=O)N2CCC2C(=O)N1	0.38
14	Docosane	CCCCCCCCCCCCCCCCCCC	0.25
15	Hexadecanonic acid, methyl ester	O=(00)22222222222222222222222222222222222	0.44
16	Hexadecanonic acid, ethyl ester	O=CCCCCCCCCCCCCC(OCC)=O	0.54
17	Tricosane	CCCCCCCCCCCCCCCCCCCC	0.25
18	Cyclo (Ala-Val)	CC1C(=O)NC(C(=O)N1)C(C)C	0.43
19	Octadecanoic acid, methyl ester	OO(CCCCCCCCCCCCCC(=0)OC	0.44
20	Propanol,3-(O-Azi,dophenyl)	[N]=[N]=NC1=CC=CC=C1CCCO	
21	Pentacosane	CCCCCCCCCCCCCCCCCCCCC	0.25
22	Cyclo (Pro-Pro)	C1CC2C(=O)N3CCCC3C(=O)N2C1	0.38

Table S2. Compounds identified from Bacillus velezensis W1 and the maximum similarity

23	cyclo (Pro-trans-4-OH-Pro)	O=C(N1CC(O)CC12)C3CCCN3C2=O	0.48
24	Heptacosane	CCCCCCCCCCCCCCCCCCCCCCCCCC	0.25
25	Eicosane,7-hexyl-	CCCCCCCCCCCCC(CCCCCC)CCCCCC	0.25
26	Hexadecane, 2,6,10,14-tetramethyl-	CCC(C)CCCC(C)CCCC(C)CCCC(C)C	0.46
27	Cyclo (Gly-Phe)	C1C(=O)NC(C(=O)N1)CC2=CC=C2	0.66
28	Cyclo (Leu-Leu)	CC(C)CC1C(=O)NC(C(=O)N1)CC(C)C	0.44
29	Etheyl citrate	O=C(OCC)CC(C(OCC)=O)(O)CC(OCC)=O	0.46
30	Cyclo (Gly-Tyr)	C1C(=O)NC(C(=O)N1)CC2=CC=C(C=C2)O	0.61
31	Cyclo (Phe-Pro)	C1CC2C(=O)NC(C(=O)N2C1)CC3=CC=C2=C3	0.66
32	Cyclo (Phe-Leu)	CC(C)CC1C(=O)NC(C(=O)N1)CC2=CC=C2	0.75
33	Cyclo (Phe-trans-4-OH-Pro)	C1C(CN2C1C(=O)NC(C2=O)CC3=CC=CC=C3)O	0.73
34	Cyclo (Tyr-trans-4-OH-Pro)	O=C(NC(CC1=CC=C(O)C=C1)C2=O)C3N2CC(O)C3	0.68
35	Macrolactin A	CC1CCCC=CC=CC(CC(CC=CC=CC(CC=CC(=O)O1)O)O)O	0.54
36	Macrolactin A, 7-O-malonyl-	CC1CCCC=CC=CC(CC(CC=CC=CC(CC=CC=CC(=O)O1)OC(=O)C C(=O)O)O)O	0.48
37	Surfactin C14	$\begin{array}{c} CC(C)CCCCCCCCCC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)O1)CC(C)C)CC(C)C)CC(=O)O)C\\ (C)C)CC(C)C)CC(C)C)CCC(=O)O \end{array}$	0.48
38	Surfactin C15	$\begin{array}{c} CC(C)CCCCCCCCCCCCC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)O1)CC(C)C)CC(C)C)CC(=O)O)\\ C(C)C)CC(C)C)CC(C)C)CCC(=O)O \end{array}$	0.48
39	Bacillomycin D C13	$\begin{array}{c} O=C(C(CC(NC(C(CC1=CC=C(C=C1)O)NC(CC(N)=O)NC(CC(N2))C(CC(CC)=O)=O)=O)=O)N(NC(CC(CC(O)=O)C(NC(CC))=O)=O)=O)=O)=O)=O)=O)CCC3 \end{array}$	0.67
40	Bacillomycin D C14	$\begin{array}{l} O=C(C(CC(NC(C(CC1=CC=C(C=C1)O)NC(C(CC(N)=O)NC(CC(N2)O)C(CC(CC)=O)=O)=O)=O)N)N3C(C(NC(CCC(O)=O)C(NC(CO)C(NC(CC(O)=O)C(CC)O)C2=O)=O)=O)=O)CCC3 \end{array}$	0.67
41	Bacillomycin D C15	O=C(C(CC(NC(C(CC1=CC=C(C=C1)O)NC(C(CC(N)=O)NC(CC(N2))C(CCCCCCCC)=O)=O)=O)=O)=O)N)N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(NC))N3C(C(NC(CCC(O)=O)C(NC))N3C(NC))N3C(NC(NC(NC(NC))N3C(NC))N3C(NC))N3C(NC)N3C(NC))N3C(NC)N3C(NC)N3C(NC))N3C(NC)N3C(NC))N3C(NC)N3C(NC)N3C(NC))N3C(NC)N3C(NC)N3C(NC)N3C(NC))N3C(NC)N3C(NC)N3C(NC)N3C(NC))N3C(NC)N3C(NC)N3C(NC))N3C(NC)	0.67

		(CO)C(NC(C(C)O)C2=O)=O)=O)=O)CCC3	
		O=C(C(CC(NC(C(CC1=CC=C1)O)NC(C(CC(N)=O)NC(CC(N2	
42	Bacillomycin D C16)CCCCCCCCCCCC)=0)=0)=0)N)N3C(C(NC(CCC(0)=0)C(N	0.67
		C(CO)C(NC(C(C)O)C2=O)=O)=O)CCC3	
		O=C(C(CC(NC(C(CC1=CC=C1)O)NC(C(CC(N)=O)NC(CC(N2	
43	Bacillomycin D C17)CCCCCCCCCCCC)=0)=0)=0)N)N3C(C(NC(CCC(0)=0)C(0.67
		NC(CO)C(NC(C(C)O)C2=O)=O)=O)CCC3	