Supporting Information for

Synthesis, characterization, and evaluation of selective

molecularly imprinted polymers for fast determination of

synthetic cathinones

Hong Chen,^{a,b,c} Fangsheng Wu,^{a,b,c} Yibing Xu,^{a,b} Yuan Liu,^{a,b} Lun Song,^{a,b} Xiujuan

Chen,^{a,b} Qun He,^{a,b} Wei Liu,^{a,b} Qiaoying Han,^{a,b} Zihua Zhang,^{a,b} Yun Zou,^{a,b,*} and

Wenbin Liu^{a,b,*}

a. Shanghai Key laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 803 Zhongshan North 1st Road, Shanghai, 200083, P. R. China.
b. Shanghai Yuansi Standard Science and Technology Co., Ltd., 196 Ouyang Road, Shanghai, 200080, P. R. China.

c. These authors contributed equally to this work and should be considered as co-first authors.

* Corresponding author. Fax/Tel: +86-21-22028361.

E-mail address: wbliu1981@163.com (W.B.Liu)

The Slips or Langmuir-Freundlich isotherm model was calculated using equation,

$$Q_e = \frac{K_{LF} C_e^n}{1 + \alpha_{LF} C_e^n}$$

where Q_e is the amount of analyte adsorbed at equilibrium, C_e (mg/mL) represents the concentration of 4-MDMC at adsorption equilibrium. Whereas K_{LF} , α_{LF} and N are the Slips constants.

Fig.S1. (A) XRD patterns and (B) FT-IR spectra of MIPs, unextracted MIPs and NIPs.

Fig.S2. Slips or Langmuir-Freundlich adsorption model of 4-MDMC onto MIPs at different temperatures.

Fig.S3. (A) Langmuir adsorption model, (B) Freundlich adsorption model, (C) Temkin adsorption model, and (D) Slips or Langmuir-Freundlich adsorption model of 4-MDMC onto NIPs at different temperatures.

Fig.S4. Pseudo-first-order model of 4-MDMC onto (A) MIPs and (B) NIPs at different temperatures.

Table S1 Parameters of isotherm models for adsorption of 4-MDMC onto MIPs and NIPs atdifferent temperatures.

		Qe		Langmuir		Freundlich			Tempkin			Langmuir-Freundlich			
T/K		(mg/	Qm	b	R ²	 K _F	n	R ²	-	A	В	R ²	K _{LF}	n	R ²
		g)	(mg/g)	(L/mg)											
200	MIPs	5.806	8.818	0.0491	0.7261	1.364	2.653	0.7572		0.9656	1.5115	0.6905	0.0260	0.0038	08966
298	NIPs	0.861	1.246	0.0689	0.8994	0.275	3.176	0.8155		1.2497	0.2268	0.7648	0.0147	0.0093	0.9531
308	MIPs	7.004	10.593	0.0628	0.8727	1.622	2.422	0.9029		0.9569	1.9950	0.8295	0.1823	0.0208	0.9430
	NIPs	1.078	1.323	0.1520	0.9894	0.459	4.070	0.9909		3.8690	0.2240	0.9759	0.2723	0.0891	0.9817
318	MIPs	8.944	12.369	0.0715	0.8784	2.040	2.467	0.9323		1.1158	2.3201	0.8372	0.0638	0.0512	0.9579
	NIPs	1.786	2.362	0.1122	0.9720	0.620	3.251	0.9607		1.7886	0.4487	0.9345	0.2963	0.8993	0.9444

			Pse	udo-first-orde	r	Pseudo-second-order				
T/K		_	V	logQe	R ²	K ₂	\mathbf{O} (max $ \mathbf{x}\rangle$	R ²		
			κ _l	(mg/g)			$Q_{e}(mg/g)$			
208	MIPs		0.0754	0.6469	0.9584	0.0572	5.920	0.9993		
298	NIPs		0.0604	-0.4254	0.9212	0.4540	0.886	0.9991		
	MIPs		0.0788	0.7736	0.9476	0.0441	7.171	0.9994		
308	NIPs		0.0365	-0.5102	0.8972	0.5181	1.112	0.9995		
210	MIPs		0.0716	0.6989	0.9447	0.0551	9.141	0.9996		
318	NIPs		0.0374	-0.1189	0.9584	0.1527	1.852	0.9998		

Table S2 Adsorption kinetic parameters for adsorption of 4-MDMC onto MIPs and NIPs at different temperatrures.

Table S3 Recoveries of 4-MDMC obtained from human urine samples.

Sample	Added (µg/L)	Found (µg/L)	Recovery (%)	RSD (n=3,%)	
	0	ND			
Human urine	40	27.7	69.3	4.7	
	200	151.0	75.5	3.9	
	400	315.6	78.9	3.5	