Supplementary Table for RSC Advances

Compound	Class	Origin	Source	Year	Activity	References
Ergosterdiacids A Ergosterdiacids B	Diels-Alder additive steroids	Mangrove derived fungus Aspergillus sp (DM29 strain)	Soil of mangrove plant Aegiceras corniculatum in Thailand (South China Sea)	2018	In vitro inhibition activity against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). IC50 = 15.1μ M in vitro anti-inflammatory effects by suppressing the NO production at 4.5 μ M. In vitro inhibition activity against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). IC50 = 30.1μ M In vitro anti-inflammatory effects by suppressing the NO production at 3.6 μ M.	1
Cholesterol	Steroids				NA	
Ergosterol						
Ergosterol peroxide						
Azacoccones A	Aza-epicoccone derivatives	The fungus Aspergillus	Intertidal zone of the		Non-significant free radical	2
Azacoccones B		flavipes (507)	Yangtze River, Wuhan, Hubei Province, P. R. China		scavenging activity	
Azacoccones C					Significant free radical scavenging activity with IC50 = 4.0 µg/mL, compared to positive control trolox (4.55 µg/mL)	
Azacoccones D					Non-significant free radical scavenging activity	
Azacoccones E					Significant free radical scavenging activity with IC50 = 2.4 µg/mL, compared to the positive control trolox (4.55 µg/mL)	
(+)-asperglactam A	3-arylisoindolinone enantiomer	Aspergillus versicolor SYSU-	Isolated from the branches		Moderate inhibitory activity	3
(-)-asperglactam A		SK8025	of the mangrove plant		against α-glucosidase with IC50	
(+)-1-hydroxyboivinianic acid (2)	Norbisabolane enantiomer		Excoecaria agallocha		values	
(-)-1-hydroxyboivinianic acid (2)	Noroisubolane enantionier		collected from Shankou in			
(+)-sydowic acid	Sesquiterpene derivatives		Guangxi province, China			

(–)-sydowic acid					
(±)-hydroxysydonic acid				Non-significant as antidiabetic and anti-inflammatory	
(±)-sydonic acid					
Engyodontiumone I					
Deoxy-7,14-didehydrosydonol				Significant inhibitory activity against α -glucosidase with IC50 = 7.5 μ M (anti-diabetic) Inhibit nitric oxide production in RAW 264.7 macrophages with IC50 = 12.5 μ M (anti- inflammatory)	
Aspergillusenes A				Non-significant as antidiabetic and anti-inflammatory	
Asperimides A	Aromatic butenolides	A. terreus SC1550	Isolated from fresh,	Non-significant as anti-	4
Asperimides B			healthy leaves of S. maritima L., which were	inflammatory	
Asperimides C			collected from Yongxing Island, South China Sea, China	Exhibited potent anti- inflammatory with IC50 = 0.78 ± 0.06	
Asperimides D				Exhibited potent anti- inflammatory with IC50 = $1.26 \pm 0.11 \ \mu$ M,	
Butyrolactone I				Non-significant as anti- inflammatory	
Eurobenzophenones A	Polyketide derivatives	Aspergillus europaeus WZXY-SX-4-1	Isolated from the marine sponge Xestospongia testudinaria, collected at the Weizhou Island in	Weak inhibitory effects against NO production and the DPPH radical scavenging activity	5
Eurobenzophenones B			Guangxi Province of China	Exerted remarked down- regulation of NF- κ B in LPS induced SW480 cells (% inhibition = 74.9 ± 3.8) Weak inhibitory effects against NO production and the DPPH radical scavenging activity	
Eurobenzophenones C				Exhibited potent radical scavenging activity against DPPH $IC50 = 1.7 \pm 0.2$ ug/mI	
Euroxanthones A				Exerted remarked down- regulation of NF- κ B in LPS induced SW480 cells (% inhibition = 68.8 ± 7.0)	

			weak inhibitory eff NO production and	fects d the
Euroxanthones B			radical scavenging	activ
(+)1-O-demethylvariecolorguinones A				
14-O-Demethylsulochrin				
(+)-variecolorquinone A				
3-de-O-methylsulochrin			Exhibited potent ra	adica
			scavenging activity	y aga
			DPPH. $IC50 = 2.3$	$\pm 0.$
			Potent inhibition a	gain
			in SW480 cells inc	luce
			(% inhibition = 71)	.0 ±
14-de-Omethyl-5-methoxysulochrin			Exhibited potent ra	adica
			scavenging activity	y ag
			DPPH. $IC50 = 5.4$	$\pm 0.$
Sulochrin			Weak inhibitory ef	ffect
5-methoxysulochrin			NO production and	d the
Calyxanthone			radical scavenging	, acti
Yicathin C				
Yicathin A				
Yicathin B			Exerted remarked	dow
			regulation of NF-K	Bi
			induced SW480 ce	lls
			inhibition = $81.2 \pm$	8.3
			Weak inhibitory ef	ffec
			NO production and	1 th
			radical scavenging	,
	<u> </u>		activity	
Dermolutein			Exerted remarked	aow
			induced SW480 co	
			inhibition = $73.1 +$	- 12
			Weak inhibitory ef	ffect
			NO production and	d the
			radical scavenging	
			activity	
Methylemodin			Exerted remarked	dow
-			regulation of NF-ĸ	B ir
			induced SW480 ce	ells (
			inhibition = $75.9 \pm$	8.3
			Weak inhibitory ef	ffect
			NO production and	d the
1-methoxy-14-dehydroxywentiquinone C			radical scavenging	,
Wentiquinone C			activity	

6,6'-oxybis(1,3,8-trihydroxy-2-((S)-1-methoxyhexyl)anthracene- 9,10-dione) 6,6'-oxybis(1,3,8-trihydroxy-2-((S)-1-hydroxyhexyl) anthracene- 9,10-dione) 1'-O-methylaverantin Averantin Averantin Averythrin Stergmatocystin	Anthranquinones Xanthones	Marine-derived fungus Aspergillus versicolor	A marine clam unidentified		Showed selective antibacterial activity against Gram-positive Staphylococcus aureus (30 µg/well) Exhibited weak cytotoxicity against human cancer cell lines and antibacterial activity Exhibited moderate cytotoxicity against human cancer cell lines (IC50 = 11.25–17.36 µg/mL)	6
vanecoxantnone					against human cancer cell lines and antibacterial activity	
Aspergillusene D	Bisabolane sesquiterpenoids	Aspergillus sydowii SCSIO41301	Sponge Phakellia fusca, which was collected from	2019	Weak active as antivirus to different influenza strains	7
2-Hydroxy-1-(hydroxymethyl)-8-methoxy-3-methyl-9H- xanthen-9- one	Xanthones		the Xisha Islands of China		Obvious selective inhibitory activities against A/Puerto Rico/8/34 (H1N1). IC50 = 4.70 \pm 1.11 µM Obvious selective inhibitory activities against A/FM-1/1/47 (H1N1). IC50 = 4.04 \pm 0.58 µM	
2-Hydroxy-1-(hydroxymethyl)-7,8-dimethoxy-3-methyl-9-H- xanthen-9-one					Obvious selective inhibitory activities against A/Puerto Rico/8/34 (H1N1). IC50 = 2.17 \pm 1.39 μ M	
3-(2,5-Dimethylbenzo[d][1,3]dioxol-2-yl)propanoic acid 2-(5-Hydroxy-4-methylpentyl)-2-methylbenzo[d][1,3]dioxole-5- carboxylic acid	Catecholderivatives				NA	
Sydonic acid	Bisabolane sesquiterpenoids				Weak active as antivirus to	
(E)-7-deoxy-7,8-didehydrosydonic acid	Sesquiterpenoids				different influenza strains	
(Z)-7-deoxy-7,8-didehydrosydonic acid						
7-deoxy-7,14-didehydrosydonic acid						
cyclo-12 hydroxysydonic acid						
(+)-12- hydroxysydonic acid						
bisdethiobis(methylthio)-acetylaranotin	Polyketides					
1,6,8-trihydroxy-3-methylanthraquinone	Anthraquinones					
Questin					Obvious selective inhibitory activities against A/Puerto Rico/8/34 (H1N1). IC50 = 1.92 ± 0.50 μM	
Emodic acid					Obvious selective inhibitory activities against A/Puerto Rico/8/34 (H1N1). IC50 = 2.00	

					± 1.10 μM	
Parietinic acid					Weak active as antivirus to	
					different influenza strains	
3,7-dihydroxy-1,9 -dimethyldibenzofuran	Dibenzofuranes				Obvious selective inhibitory	
					activities against A/Puerto	
					Rico/8/34 (H1N1). IC50 = 1.31	
					± 0.79 μM	
					Obvious selective inhibitory	
					activities against A/FM-1/1/47	
					(H1N1). $IC50 = 2.84 \pm 0.80 \mu\text{M}$	
					Obvious selective inhibitory	
					activities against A/Atcni/2/08 (U2N2) $LC50 = 1.24 \pm 0.14$ wM	
4-hydroxy-3 6-dimethyl-2-pyrone	Aliphatic pyrones				Weak active as antivirus to	
4-methyl-5 6-dihydronyren-2-one	inpluite pyrolles				different influenza strains	
2-(Quipoline-8-carboxamido)benzoic acid	Quinolone alkaloid	Aspergillus sp. SCSI006786	Deen-sea sediment	2020	Weak inhibitory activities	8
3-Hydroxy_1_((28.68)-6-(hydroxymethyl)-2.6-	Bisabolane-type sesquiterpene	risperginus sp. Sebiotovoo	collected from Indian	2020	against the tested nathogenic	
dimethyltetrahydro_2H-nyran_2-yl)benzoic acid	derivatives		Ocean		bacteria	
(-)-Austrocene						
3-hydroxy-4-(5-hydroxy-5-methyl-1-methylenehexyyl)-benzoic						
acid						
(R)-(+)-sydowic acid						
engvodontiumone I	Sesquiterpene derivatives					
sydonic acid						
(S)-(+)-11-dehydrosydonic acid						
Methyl 2-[(2-aminobenzoyl)aminolbenzoate	Miscellaneous					
Methyl-N-(2-acet- aminobenzovl) anthranilic acid						
3 7-dihydroxy-1 9-dimethyldibenzofuran	Benzofuranes				Exhibited moderate selective	1
5,7 diffydroxy 1,9 difficultyfdroenzorurun	Denzoruranes				inhibitory activities against the	
					tested pathogenic bacteria with	
					MIC = $3.13 - 6.25 \mu g/mL$	
Diorcinol	biphenyl derivatives	1			Exhibited moderate selective	
	1 2				inhibitory activities against the	
					tested pathogenic bacteria with	
					MIC = 12.5- 3.13 μg/mL	
3,4-dihydroxyphenylacetic acid methyl ester	Miscellaneous				Exhibited moderate selective	
					inhibitory activities against the	
					tested pathogenic bacteria	
					(MRSA) with MIC = 12.5	
					μg/mL	-
Indole-3-acetic acid					Weak inhibitory activities	
					against the tested pathogenic	
(1) Agnesterate D(1)	Dutanalida dariyatiyas	A sparsillus tarraus	Derived from the marine	2019	Exhibited notent inhibiter	9
(±)-Aspenderetal D (±)	Butenonde derivatives	Asperginus terreus	Derived from the marine	2018	Exhibited potent inhibitory	

		DI 1 11 0	and the second	
		sponge Phakellia fusca	activities against α -glucosidase	
			with IC50 = $8.65 \pm 0.4-9.98 \pm$	
			0.8 μM (positive control	
			acarbose with an IC50 value of	
			320 μM)	
Asperteretal E	1		Exhibited potent inhibitory	
rispertereur E			activities against a-glucosidase	
			with $IC50 = 12.26 \pm 1.1$ µM	
			(positive control costbose with)	
			C_{2}	
a	-			
flavipesolide B			Exhibited potent inhibitory	
			activities against α -glucosidase	
			with IC50 = $10.3 \pm 0.6 \mu\text{M}$	
			(positive control acarbose with	
			an IC50 value of 320 µM)	
flavipesolide C			Exhibited potent inhibitory	
··· F ··· ·			activities against α -glucosidase	
			with $IC50 = 7.63 \pm 0.4 \mu M$	
			(positive control acarbose with	
			an $IC50$ value of 320 µM	
hut valaatana I			Exhibited notant inhibitery	
butyrolacione i			Exhibited potent minoitory	
			activities against a-glucosidase	
			with $IC50 = 14.18 \pm 1.03 \mu\text{M}$	
			(positive control acarbose with	
			an IC50 value of 320 µM)	
			Showed moderate antioxidant	
			activities. IC50 = $38 \pm 3.7 \mu M$	
butyrolactone II			Showed moderate antioxidant	
			activities. $IC50 = 86 \pm 6.3 \mu M$	
			Exhibited moderate inhibitory	-
			activities against a-glucosidase	
			with $IC50 = 95.12 \pm 5.7$ mM	
			(positive control coerbose with	
			(positive control acarbose with	
	-		an ICS0 value of 320 µlvI)	
5-[(3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-yl)-			Exhibited potent inhibitory	
methyl]-3-hydroxy-4-(4-hydroxyphenyl)-2(5H)-furanone			activities against α -glucosidase	
			with IC50 = $11.65 \pm 0.7 \mu\text{M}$	
			(positive control acarbose with	
			an IC50 value of 320 µM)	
			Showed moderate antioxidant	
			activities. $IC50 = 90 \pm 2.5 \mu M$	
aspernolide A	Butenolide derivatives		Showed moderate antioxidant	
			activities $IC50 = 97 + 4.2 \text{ m}$	
			Exhibited moderate inhibitery	-
			Exhibited moderate inhibitory	
			activities against α -glucosidase	

butyrolactone IV butyrolactone V					with IC50 = $47.33 \pm 3.8 \mu$ M (positive control acarbose with an IC50 value of 320 μ M) NA Exhibited moderate inhibitory activities against α -glucosidase with IC50 = $110.27 \pm 8.2 \mu$ M (positive control acarbose with an IC50 value of 320 μ M)	
aspulvinone E					did not show any notable AChE inhibitory activity in vitro .	
aspergilactones A	γ-lactones	Aspergillus sp. LS45	sponge-derived fungus	2019	Exhibited significant inhibition against the lateral root growth of Arabidopsis thaliana Columbia- 0 at a concentration of 100 µM.	10
aspergilactones A (1) and B					did not show any notable AChE	
annularin A pericoterpenoid A	Pyranones Naphthalene carboxylic acid derivatives				inhibitory activity in vitro. Exhibited significant inhibition against the lateral root growth of Arabidopsis thaliana Columbia- 0 at a concentration of 100 μ M. Showed moderate inhibitory effects on CCRFCEM and K562 cancer cell lines with IC50 = 13.8 ± 1.6 and 12.9 ± 2.5 μ M.	
Violaceimides A Violaceimides B	methylsuccinimide-based sulfur- bearing compounds	Aspergillus violaceus WZXY-m64-17	sponge-associated fungal strain	2018	exerted selective inhibition against the growth of human leukemia U937 (IC50 = $5.3 \pm 0.4 \mu$ M) and human colorectal cancer cell HCT-8 (IC50 = $1.5 \pm 0.28 \mu$ M) with low cytotoxicity toward Vero cells exerted selective inhibition against the growth of human leukemia U937 (IC50 = $1.8 \pm 0.6 \mu$ M) and human colorectal cancer cell HCT-8 (IC50 = $2.51 \pm 0.51 \mu$ M) with low	11
Violaceimides C Violaceimides D Violaceimides E					cytotoxicity toward Vero cells weak as inhibitory for different cancer cell lines showed moderate activity to	
			·	2010	inhibit U937 cells (IC50 = 16.6 ± 8.3 μM)	12
aspergilisteroid A	steroids	Aspergillus sp. LS116	marine sponge Haliclona	2019	displayed significant	12

neocyclocitrinol B			sp. collected in the Linshui, Hannan province, China		antibacterial activity against V. harveyi with a MIC value of 16 µg/mL [bacteria] displayed non-significant antibacterial activity against V. harveyi	
luteoride E	prenylated tryptophan derivative	Aspergillus terreus	separated from the coral Sarcophyton subviride, which was collected from the coast of Xisha	2018	showed significant inhibition against LPS-induced NO production with IC50 values = 24.64 μM	13
versicolactone G	butenolide derivative		Sea		showed potent inhibitory against α -glucosidase activity with IC50 = 104.8 ± 9.5 μ M, which was lower than the positive control acarbose (IC50=154.7 ± 8.1 μ M) showed significant inhibition against LPS-induced NO production with IC50 values = 15.72 μ M	
(3E,7E)-4,8-dimethyl-undecane-3,7-diene-1,11-diol	linear aliphatic alcohol				showed significant inhibition against LPS-induced NO production with IC50 values = 18.62 μM	
asterrelenin	alkaloids				non-significant as antidiabetic or anti-inflammatory agents	
methyl 3,4,5-trimethoxy-2-(2- (nicotinamido)benzamido)benzoate					showed significant inhibition against LPS-induced NO production with IC50 values 5.48 μM	
14α-hydroxyergosta-4,7,22-triene-3,6-dione	steroids				showed significant inhibition against LPS-induced NO production with IC50 values = 26.83 μM	
territrem A	Miscellaneous				showed significant inhibition against LPS-induced NO production with IC50 values = 29.34 μM	
territrem B					non-significant as antidiabetic or	
territrem C					anti-inflammatory agents	
lovastatin					showed significant inhibition against LPS-induced NO production with IC50 values = 17.45 μM	
monacolin L acid methyl ester					non-significant as antidiabetic or	
monacolin					anti-inflammatory agents	

L-asparaginase	enzymatic proteins	Aspergillus niger AKV- MKBU	marine-derived		exhibited noteworthy antiproliferative activity against various cancer cell lines tested (A549, U87MG, HepG2, JURKAT E6, and bone marrow derived chronic myeloid leukemia cells) with IC50 = 0.375, 0.399, 0.204, 0.22, and 0.2 U/mL respectively.	14
Brasilanones A	brasilane sesquiterpenoids	Aspergillus terreus [CFCC 81836]	marine-derived		showed moderate inhibitory effect with NO inhibition rates of 47.7% at the concentration of 40 μM.	15
Brasilanones C					production inhibition	
Brasilanones D					production minorition	
Brasilanones E					showed moderate inhibitory effect with NO inhibition rates of 37.3% at the concentration of 40 µM.	
Brasilanones F					not active as cytotoxic or NO production inhibition	
asperterreusines A	dihydrobenzofuran derivatives				showed cytotoxicity against HL- 60 and SW-480 cell lines with IC50 values of 15.3 and 25.7 μM, respectively	
asperterreusines B					not active as cytotoxic or NO	
asperterreusines C					production inhibition	
terreustoxins A	highly oxygenated	Aspergillus terreus	soil sample which was	2019	Not active for inhibition of	16
terreustoxins B	meroterpenoids		collected from Penguin Island in Antarctic		inhibited the proliferation of Con A-induced murine T cells	
terreustoxins C					inhibited the proliferation of Con A-induced murine T cells at the concentration of 10 μM	
terreustoxins D					Not active for inhibition of	
terreustoxins E					inhibited the proliferation of	
terreustoxins F					Con A-induced murine T cells	
terreustoxins G						
terreustoxins H						
terreustoxins I						
terreustoxins J						
terreustoxins K						
terretonin J						
terretonin A						

terrenoid					inhibited the proliferation of Con A-induced murine T cells at the concentration of 10 µM Not active for inhibition of	
asperterpene M					inhibited the proliferation of Con A-induced murine T cells	
(R)-4-((2,2-dimethylchroman-6-yl)methyl)-3-(4-hydroxyphenyl)- 5-methoxyfuran-2(5H)-one) 1-(2,2-dimethylchroman-6-yl)-3-(4-hydroxyphenyl)propan-2-one (R,E)-3-(2,2-dimethylchroman-6-yl)-4-hydroxy-5-((2-(2- hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5- yl)methylene)furan-2(5H)-one	meroterpenoids	Aspergillus terreus OUCMDZ-2739	marine algicolous fungus	2018	exhibited stronger a-glucosidase inhibition than 1- deoxynojirimycin and acarbose (positive controls) with IC50 values of 24.8, 191.7 and 555.1 µM, respectively	17
methyl (R)-2-(2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran- 5-yl) acetate					antidiabetic	
flavipesolide A	Butenolide derivatives					
flavipesolide B						
navipesonae C	Helegeneted furgeneras				The externicity was absorted	
					The cytotoxicity was observed for K562 with IC50 values of 9.5, μ M. exhibited stronger a-glucosidase inhibition than 1- deoxynojirimycin and acarbose (positive controls) with IC50 values of 1.2, 191.7 and 555.1 μ M, respectively was an anticompetitive inhibitor with Ki value of 1.42 μ M.	
5-[(3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-yl)-methyl]-3- hydroxy-4(4-hydroxyphenyl)-2(5H)-furanone	Butenolide derivatives				The cytotoxicity was observed against MCF-7 and K562 cells with IC50 values of 10.1, 13.0 µM	
(3R,4R)-3,4-dihydro-4,8-dihydroxy-6,7-dimethoxy-3- methylisocoumarin (3R)-3,4-dihydro-6,8-dimethoxy-3- methylisocoumarin	coumarins				not active as cytotoxic or antidiabetic	
terretonin C	meroterpenoids				The cytotoxicity was observed against MCF-7 cell with IC50 values of 8.5 μM	
ergosterol	sterols				not active as cytotoxic or	
aspernolide B	Butenolide derivatives				antidiabetic	

butyrolactone II						
butyrolactone IV						
butyrolactone I					exhibited stronger	
					deoxynoiirimycin and acarbose	
					(nositive controls) with IC50	
					values of 61.6, 191.7 and 555.1	
					μM, respectively	
aspernolide A					not active as cytotoxic or	
asterrelenin	alkaloid				antidiabetic	
(+)-terrein	Miscellaneous					
aspvanicin A	cryptic 3,4-dihydronaphthalen-	Aspergillus versicolor	through bacterial co-			18
	(2H)-1-one (1-tetratone)		approaches		- hanne di se de de se in se attaitées	
aspvanicin B	derivatives		approaches		showed cytotoxic activity	
					cell line I 5178V with IC50 =	
					22.8 μM.	
Methyl orsellinate	Cryptic metabolites				not active as cytotoxic or	
Orsellinic acid					antibacterial	
Cordyol C						
sydowiol B						
20 p- Hydroxybenzaldehyde					revealed weak	
					antibacterial activity against	
					Staphylococcus aureus	
Fusarubin					not active as cytotoxic or	
					antibacteriai	
Sterigmatocystin	xanthones				showed cytotoxic activity	
					against the mouse lymphoma	
					cell line L5178Y with IC50 =	
					2.2 μM.	
Infectopyrone	Miscellaneous				not active as cytotoxic or	
Versiol					antibacterial	
caletasin	N-methyl cyclic pentapeptide	Aspergillus sp. MEXU 27854	marine-facultative	2019	NA	19
butyrolactone II	Aromatic butenolides		Aspergillus sp			
circumdatin M	benzodiazepine alkaloid	Aspergillus sp. FM242	a Hawaiian marine		inactive against A2780 and	20
					A2780CisR (ovarian cancer cell	
- bits	-lihid	A	alars and descend ask	2019	lines)	21
cnitosan	ongosaccharides	Aspergillus griseoaurantiacus	aigae and decayed salty	2018	snowed good antibacterial	2.
		KA010700	from Port-Said		Staphylococcus aureus and	
			Governorate, Egypt		Lactobacillus cereus with	
					inhibition zone diameter = $19 \pm$	
					$0.80, 21 \pm 0.81, \text{ and } 20 \pm 0.71,$	

					respectively by 40 µg/well and antioxidant activities	
chitinase enzyme	enzymatic proteins				showed good antifungal activity against F.solani with inhibition zone diameter = 23 ± 1.20	
6,8,1'-tri-O-methylaverantin	anthraquinones	Aspergillus sp. SF-6796	a marine organism collected from the Ross Sea, Antarctica		Anti-neuroinflammatory effect via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia	22
6,8-di-O-methylaverufin	xanthones				non-potent as anti-	
5-methoxysterigmatocystin					neuroinflammatory effect	
4-n-nonylphenol	phenols	Aspergillus nomius and Aspergillus terreus	derived from Moshui river estuarine sediment of Jiaozhou bay, Qingdao, China		Hazordous material	23
nuatigenin	steroids	Aspergillus nidulans MCCC	deep-sea-derived	2019	NA	24
1-dehydronuatigenone		3A00050				
1-dehydroisonuatigenone						
3β,15α-dihydroxyl-						
(22E,24R)-ergosta-5,8(14),22-trien-7-one						
β,15β-dihydroxyl-(22E,24R)-ergosta-5,8(14),22-trien-7-one						
5α,6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14),22-dien-7-one						
3β,5α,9α-trihydroxyergosta-7,22-diene-6-one						
3β,5α-dihydroxy-6β-acetoxy-ergosta-7,22-diene						
(3β,5α,6β,22E)-ergosta-7,22-diene-						
3,5,6-triol 6-palmitate						
$5\alpha, 8\alpha$ -epidioxyergosta-						
6,9(11),22-trien-3β-01						
(1/R)-4-hydroxy-1/-methylincisterol						
ergosta-5,/,22-trien-3p-ol						
(22E,24K)-50,80-epidloxyergosia-6,22-dien-5p-ol	A state state state state					
6,8-di-O-methylaverufin	Anthraquinones					
o-O-metnylaverulin						
8-O-methylversicolorin A	high and device times					
	bipnenyl derivatives					
	Miscellaneous	A		2019		25
asperindes A	butenonde derivatives	Asperginus terreus	deposit which was	2018	activities	
aspendes B			collected in 10-meter-deen		activities	
(+)-3',3'-di-(dimethylallyl) -butyrolactone II			from the Fengxian Bay, Shanghai, China.		exhibited the most potent cytotoxin of PANC-1 cell line.	

				with the IC50 values of 5.3 µM	
(2R)-Methyl 2-(3-((3,3-dimethyloxiran-2-yl)methyl)-4- hydroxybenzyl)-4-hydroxy-3-(4-hydroxyphenyl)-5-oxo-2,5- dihydrofuran-2-carboxylate				exhibited no obvious cytotoxic activities	
versicolactone B				exhibited the most potent cytotoxin of PANC-1 cell line, with the IC50 values of 9.4 μM	
(R)-Methyl 4-hydroxy-2-(4-hydroxy-3-(3-methylbut-2-en-1- yl)benzyl)-3-(4-hydroxyphenyl)-5-oxo-2,5-dihydrofuran-2- carboxylate				exhibited no obvious cytotoxic activities	
butyrolactone V					
(R)-Methyl 4-hydroxy-3-(4-hydroxyphenyl)-2-(((R)-2-(2- hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl)methyl)-5- oxo-2,5-dihydrofuran-2-carboxylate					
(R)-Methyl 4-hydroxy-2-(4-hydroxy-3-((R)-2-hydroxy-3- methylbutyl)benzyl)-3-(4-hydroxyphenyl)-5-oxo-2,5- dihydrofuran-2-carboxylate					
(R)-Methyl 2-((2,2-dimethylchroman-6-yl)methyl)-4-hydroxy-3- (4-hydroxyphenyl)-5-oxo-2,5-dihydrofuran-2-carboxylate					
DHICA (5,6- Dihydroxyindole-2-carboxylic acid	indole carboxylic acid	Aspergillus nidulans	marine imperfect	UVB protective potential	26
chitinase	enzymatic proteins	Aspergillus flavus (AUMC 13576)	Suez Gulf	NA	27
cyclo-(L-Leu-L-Pro)	peptides	Aspergillus sydowii	marine derived fungi then OSMAC modulation	(61.52 \pm 0.26%) presented the second highest percentage of AChE inhibition. IC50 = 0.36 \pm 0.17 µmol/mL	28
cyclo-(L-Val-L-Pro)				was the most active AChE inhibitor (93.25 \pm 0.41%). IC50 = 0.36 \pm 0.17 µmol/mL was similar to the one found for galanthamine (IC50=0.38 \pm 0.15 µmol mL-1)	
cyclo-(L-Val-L-Leu)				was the less active one $(22.45 \pm 0.11\%)$	
cyclo-(L-Phe-L-Val)				(IC50=1.13 \pm 0.32 µmol mL-1) as AChE inhibitor	
ergosterol peroxide	steroids			not active as AChE inhibitor	
versiconol B	anthraquinones	Aspergillus sp. F40	sponge-derived fungus	showed weak antimicrobial	29
				parahaemolyticus with MIC values of 48 µg/mL and 24 µg/mL, respectively	
oxisterigmatocystin I	xanthones			parahaemolyticus with MIC values of 48 µg/mL and 24 µg/mL, respectively not active as antibacterial	

versiconol	polyketides			showed weak antimicrobial activity against V. parahaemolyticus with an MIC value of 12 ug/pL	
				where drawn hand in the	
oxisterigmatocystin				snowed weak antimicrobial	
				MIC value of 48 µg/mL	
dihydrosterigmatocystin				NA	
sterigmatocystin					
sydowic acid					
versicolorin B					
secosterigmatocystin					
averufin					
penicitrinone A	citrinin analogues	Aspergillus sydowii EN-534	fresh tissue of the marine red alga Laurencia okamurai collected at Qingdao, China after coculture with Penicillium citrinum EN-535	showed activity against all tested microbes with MIC = 64, 16, 32, 32, 16 μg/mL, respectively (E. coli. M. luteus. Ed. ictaluri. V. alginolyticus. V. parahaemolyticus)	30
seco-penicitrinol A,				showed activity against Ed. ictaluri and V. alginolyticus with MICs = 64, 32 μg/mL, respectively	
penicitrinol L				exhibited inhibition against E. coli with MICs 64 μg/mL	
penicitrinone F				showed activity against Ed. ictaluri and V. alginolyticus with MICs = 64, 64 μ g/mL, respectively. exhibited inhibition against V. parahaemolyticus with MICs = 32 μ g/mL	
penicitrinol A				showed activity against all tested microbes with MIC = 8, 4, 16, 32, 8 µg/mL, respectively (E. coli. M. luteus. Ed. ictaluri. V. alginolyticus. V. parahaemolyticus)	
citrinin				showed activity against all tested microbes with MIC = 8, 16, 32, 16, 8 μg/mL, respectively (E. coli. M. luteus. Ed. ictaluri. V. alginolyticus. V. parahaemolyticus)	
dihydrocitrinone				not active as anti-bacterial	
decarboxydihydrocitrinone					

phenol A acid						
phenol A						
1-(2,6-Dimethylphenyl)-2-n-propyl-1,2-dihydropyridazine-3,6- dione	phenyl pyridazine derivative	Aspergillus sp. AV-2	isolated from the healthy leaves of the mangrove plant Avicennia marina, collected from the Red Sea coast close to Hurgada, Egypt		NA	31
dioxoauroglaucin	prenylated benzaldehyde derivative				weak as antiproliferative activity against Caco-2 cell lines (human epithelial colorectal adenocarcinoma)	
tetrahydroauroglaucin					potent as antiproliferative	
isotetrahydroauroglaucin					activity against Caco-2 cell lines	
isodihydroauroglaucin					(human epithelial colorectal adenocarcinoma)	
flavoglaucin					most potent as antiproliferative activity against Caco-2 cell lines, (human epithelial colorectal adenocarcinoma) (IC50 of 2.87 μM)	
2-(2`,3-epoxy-1`,3`,5`-heptatrienyl)-6-hydroxy-5-(3-methyl-2- butenyl) benzaldehyde					potent as antiproliferative activity against Caco-2 cell lines (human epithelial colorectal adenocarcinoma)	
echinulin	indole-diketopiprazine				weak as antiproliferative activity against Caco-2 cell lines (human epithelial colorectal adenocarcinoma)	
neoechinulin B					NA	
isoechinulin B						
variecolorin J						
neoechinulin E						
cryptoechinulin B (13, aurechinulin)						
cryptoechinulin D						
ergosterol	steroids					
ergosterol peroxide						
aperterpenes N	meroterpenoids	Aspergillus terreus EN-539	fresh tissue of the marine red alga Laurencia okamurai	2019	showed inhibitory activity against influenza neuraminidase (IC50=18.0 nM)	32
aperterpenes O			collected from the coast of		did not show obvious inhibitory	
terretonins A			Qingdao, China		activity in the influenza neuraminidase inhibitory assay.	
terretonins G					showed inhibitory activity against Micrococcus luteus and Staphylococcus aureus, with MIC values of 32 and 8 µg/mL, respectively	

antheolorin G	oxoindolo diterpene epimers	Aspergillus versicolor	isolated from the fruits of the mangrove Avicennia		showed insignificant cytotoxic activity	33		
antheolorin H			marina. The plant was collected from 17 K Safaga. Red Sea. = 43 7 ± 0 43 µM)	marina. The plant was collected from 17 K Safaga, Red Sea,	marina. The plant was collected from 17 K Safaga, Red Sea,	marina. The plant was collected from 17 K Safaga, Red Sea.	showed insignificant cytotoxic activity against Hela cells (IC50 = $43.7 \pm 0.43 \ \mu$ M)	
(S)-sydowic acid	Meroterpenes		Egypt		showed insignificant cytotoxic			
(7R,8R)-8-hydroxysydowic acid					activity			
(7S,10S)-10-hydroxy-sydowic acid								
(7S,11R)-12-hydroxy-sydowic acid								
(7S,11R)-12-acetoxy-sydowic acid								
(7R,10R)-Iso-10-hydroxy-sydowic acid								
(7R,8R)-1,8-epoxy-11-hydroxy-sydonic acid								
3-hydroxy-4-(1-oxo-ethane) benzoic acid	benzoic acid derivatives							
7-deoxy-7,14-didehydro-11-hydroxysydonic acid	Meroterpenes							
Engyodontiumone J	Miscellaneous							
Engyodontiumone I								
7-deoxy-7,14-didehydro-12-acetoxy-sydonic acid	Meroterpenes				showed insignificant cytotoxic			
and (E)-7-deoxy-7,8-didehydro-12-acetoxy-sydonic acid					activity against Hela cells (IC50 = $83.8 \pm 5.2 \mu$ M)			
(E)-7-Deoxy-7,8-didehydro-12-hydroxy-sydonic acid					showed insignificant cytotoxic activity against Hela cells (IC50 = $53.5 \pm 2.1 \mu$ M)			
(7R)-11-hydroxy-sydonic acid 17					showed insignificant cytotoxic			
(7R)-11-hydroxy-sydonic acid methyl ester					activity			
An epimeric mixture of (7R,11R) and (7R,11S)-12-acetoxy sydonic acid								
12-Acetoxy-1-deoxy-sydonic								
Diorcinol	Biphenyl derivatives							
Violaceol	Diphenyl ethers				showed insignificant cytotoxic activity against Hela cells (IC50 = $83.8 \pm 0.44 \mu$ M)			
Macro-sporin	Anthraquinones				showed insignificant cytotoxic activity			
seco-clavatustide B	aminobenzoic peptide	Aspergillus clavatus AS-107	Ascidian-derived fungus		showed potent activity against aquatic pathogens Aeromonas hydrophilia and Pseudomonas aeruginosa with MIC values of 8.2 uM.	34		
clavatustide B					showed potent activity against aquatic pathogens Aeromonas hydrophilia and Pseudomonas aeruginosa with MIC values of 8.8 µM.			

5-acetyl-2,4-dihydroxy-3-methylbenzoic acid	clavatoic acid derivative				showed certain antibacterial activity against M. luteus with an MIC value of $38.1 \ \mu M$	
demethylsiderin	coumarin derivatives				not active as antibacterial	
4-methylcoumarin						
demethylkotanin						
Asperpentenone A	polyketides	Aspergillus sp. SCSIO 41024	the deep-sea	2020		35
1-((4aS,4bS,5aS,6aS,7R,8R)-7-Hydroxy-4a,6a,8-trimethyl-2- oxo-2,3,4,4a,5a,6,6a,7,8,9,9a,9b,10,11 - tetradecahydrocyclopenta[1,2]phenanthro[4,4a-b]oxiren-7- yl)butane-1,3-dione	steroid					
kojie acid	Miscellaneous				showed weak antibacterial activities against Bacillus thuringiensis and Acinetobacter baumannii with MIC values of 32 and 128 µg/mL, respectively	
phomapyrone C					not active as antibacterial	
phomaligols A						
phomaligols A1						
3,4-dihydroxy-phenylacetic acid methyl ester						
diketopiperazine alkaloid	indole alkaloids derivatives					
griseofamine A	indole alkaloids derivatives- a cyclopiazonic acid (CPA)-type alkaloid				exhibited weak antibacterial activity with an MIC value of 64 µg/mL against Escherichia coli	
oxisterigmatocystin D	xanthones	A. versicolor A-21-2-7	isolated from the deep-sea sediment (3 002 m) in South China Sea	2018	possessing moderate antioxidant activities $(0.55 \pm 0.13 \text{ Trolox} \text{equivalents})$	
oxisterigmatocystin C					possessing moderate antioxidant activities $(1.16 \pm 0.18 \text{ Trolox} \text{equivalents})$	
sterigmatocystine					possessing moderate antioxidant activities $(0.65 \pm 0.13 \text{ Trolox} equivalents)$	
dihydrosterigmatocystine					not active as cytotoxic or antioxidant	
versicolorin B	anthraquinones				possessing moderate antioxidant activities $(1.03 \pm 0.11 \text{ Trolox} equivalents)$	
					showed weak cytotoxicity on A549 with the IC50 values of 25.97 µmol/L	
UCT1072M1					potentially activated the expression of Nrf2-regulated gene $(1.49 \pm 0.28 \text{ folds to})$	

					control)	
					possessing moderate antioxidant activities $(0.97 \pm 0.01 \text{ Trolox} equivalents})$	
averantin					potentially activated the expression of Nrf2-regulated gene (1.58 ± 0.11 folds to control)	
					possessing moderate antioxidant activities $(0.89 \pm 0.10 \text{ Trolox} equivalents)$	
methyl-averantin					possessing moderate antioxidant activities (0.86 ± 0.08 Trolox equivalents)	
averythrin					potentially activated the expression of Nrf2-regulated gene (1.46 ± 0.08 folds to control)	
averufanin					possessing moderate antioxidant activities $(0.82 \pm 0.01 \text{ Trolox} equivalents)$	
averufine					possessing moderate antioxidant activities $(0.94 \pm 0.19 \text{ Trolox} equivalents)$	
					showed weak cytotoxicity on A549 with the IC50 values of 25.60 µmol/L	
nidurufin					potentially activated the expression of Nrf2-regulated gene $(1.41 \pm 0.05 \text{ folds to} \text{ control})$	
					possessing moderate antioxidant activities $(0.62 \pm 0.14 \text{ Trolox} equivalents)$	
aspergillusine A kipukasin H	alkaloid				NA	
kipukasin I						
N-Phenethylacetaminde	1					
versimide	1					
aspergillamides C	isomeric modified tripeptides	Aspergillus terreus SCSIO	marine sponge	2019	weak or not active as anti-	37
aspergillamides D		41008	Callyspongia sp., which		tuberculosis protein tyrosine	
aspergillamide A	tripeptides		was collected from the		phosphatase B (MptpB) or as	
woperBinamate 11	u populos					

aspergillamide B			seaside in Xuwen County,		cytotoxic	
cis-Lphenyla-laninamide			Guangdong Province,			
trans-L-phenylalaninamide			China			
terretrione B	polyketides					
terretrione C						
cyclo-(L-Pro-L-Phe)	peptides					
brevianamide F	prenylated indole alkaloids					
butyrolactone I	polyketides				exhibited strong inhibitory effects against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) with the IC50 being 5.11 ± 0.53 µmol/L	
1,8-dihydroxy-3-methoxy-6-methylanthracene-9,10-dione	Anthraquinones				weak or not active as anti-	
1-methyl emodin					tuberculosis protein tyrosine	
methyl 6-acetyl-4-methoxy-5,7,8-trihydroxynaphthalene-2- carboxylate					phosphatase B (MptpB) or as cytotoxic	
methyl 6-acetyl-4-methoxy-5, 8-dihydroxynaphthalene-2- carboxylate	polyketides					
(S)-6, 8-dimethoxy-3-methylisochroman-1-one						
Di-(2-ethylhexyl) Phthalate	Phthalates	Aspergillus awamori	River Nile water and sediment	2018	inhibitory activity against Candida albicans and Sarcina lutea with inhibition diameter zone of 20 mm and 23 mm active as cytotoxic against MCF7, HEPG2, HELA, and HCT 116 cell lines with IC50 = 6.525, 26.73, 42.2958, and 66.607, respectively	38
(3 R,9S,12R,13S,17S,18S)-2-carbonyl-3-hydroxylemeniveol	indoloditerpene	Aspergillus versicolor ZZ761	separated from a marine mud sample, which was collected from Shengsi island at Zhoushan, China	2019	showed antimicrobial activities with MIC values of 20.6 μM against Escherichia coli and 22.8 μM against Candida albicans.	39
Diorcinol	biphenyl derivatives				had activities in inhibiting the proliferation of human glioma U87MG and U251 cells with IC50 values of 4.4 and 11.3 μM	
sterigmatin	xanthones				not active as antibacterial or	
sterigmatocystin					antiproliferative agents	
demethylsterigmatocystin						
versicolorin B	anthraquinone				had activities in inhibiting the proliferation of human glioma U87MG and U251 cells with IC50 values of 6.2 and 30.5	

emodin				μM, respectively not active as antibacterial or antiproliferative agents	
speramide B	prenylated indole alkaloids				
notoamide D	Indole alkaloids				
notoamide E					
deoxybrevianamide E	prenylated indole alkaloids				
notoamide B	Indole alkaloids				
(-)-versocplamide B					
notoamide A					
6-epi-stephacidin A	prenylated indole alkaloids				
notoamide F	Indole alkaloids				
(±)-asperteretal F	butenolide derivative	Aspergillus terreus SCSIO FZQ028	a deep-sea sediment sample (117_03"43' E,	not active as antioxidant, antibacterial and cytotoxic	40
asperteretal E			20_04"38' N) at the depth of 1718 m collected from an open voyage to the South China Sea	showed significant activities against DPPH with IC50 ranging from 5.89 to $10.07 \mu g/mL$ showed moderate antimicrobial activities against all four tested bacteria.	
outprotectione in				showed significant activities	

aspernolide A butyrolactone IV butyrolactone I aspernolide B					against DPPH with IC50 ranging from 5.89 to 10.07 μ g/mL showed significant activities against DPPH with IC50 ranging from 5.89 to 10.07 μ g/mL showed moderate antimicrobial activities against all four tested bacteria. not active as antioxidant, antibacterial and cytotoxic showed significant activities against DPPH with IC50 ranging from 5.89 to 10.07 μ g/mL	
asperdiphenol A	diphenolic derivatives	Aspergillus niger 102	Zoanthidae collected in	2018	not active as antibacterial, cytotoxic or anti-inflammatory	41
fonsecione A asperpyrone A	bis-naphtho-γ-pyrones		City, Guangdong Province, China		NA	
aurasperone A dianhydro-aurasperone C aspernyrone C	polyketide naphthopyrones					
asperpyrone D						
asperpyrone B						
rubrofusarin B						
flavasperon	benzochromones					
epi-pinophilin B	azaphilone derivative	Aspergillus fumigatus 14–27	fresh inner tissue of	2019	not showed evident inhibitory	42
pinophilin B			gorgonian Carijoa spp.,		activities for their antibacterial and cytotoxic activities.	
pinazaphilone B			the South Chine See			
pinophilin E			the South China Sea			
acremolin C	alkaloid	Aspergillus sydowii SP-1	marine sediment sample, which was collected from site in the Antarctic Great Wall Station (62. 22 °S,	2018	displayed weak inhibition activities against MRSA and MRSE with MIC values of 32 and 16 µg/mL, respectively	43
cyclo-(L-Trp-L-Phe)	peptides		58.96 °W)		showed moderate inhibitions against methicillin-resistant S. aureus (MRSA) and methicillin- resistant S. epidermidis (MRSE) as comparing to tigecycline with equal MIC values of 0.5 and 1 µg/mL, respectively	
4-hydroxyphenylacetic acid	Miscellaneous				not active as antibacterial	
(7S)-(+)-hydroxysydonic acid	sesquiterpenes				showed moderate inhibitions	
					against methicillin-resistant S.	
					aureus (MRSA) and methicillin-	
					resistant S. epidermidis (MRSE)	

(78, 118)-(+)-12-hydroxysydonic acid acremolin A	alkaloid				as comparing to tigecycline with equal MIC values of 0.5 and 1 µg/mL, respectively not active as antibacterial showed moderate inhibitions against methicillin-resistant S. aureus (MRSA) and methicillin- resistant S. epidermidis (MRSE) as comparing to tigecycline with equal MIC values of 0.5 and 1 µg/mL, respectively	
acremolin B	alkaloid				not active as antibacterial	
sinulolide I	butenolide fatty acid	Aspergillus terreus SCSIO 41202	deep-sea sediment of the South China Sea coast	2020	exhibited significant antifungal activity against citrus postharvest pathogen Penicillium italicum (MICs = 0.125 mg/mL)	44
(9Z,12Z)-N-(2-hydroxyethyl) octadeca-9,12-dienamide	Fatty acids				exhibited significant antifungal activity against citrus postharvest pathogen Penicillium italicum (MICs around 0.062 mg/mL)	
dodecanoic acid					exhibited significant antifungal activity against citrus postharvest pathogen Penicillium italicum (MICs around 0.031 mg/mL)	
decanoic acid					exhibited significant antifungal activity against citrus postharvest pathogen Penicillium italicum (MICs around 0.062 mg/mL)	
(7R, 11S)-12 methyl hydroxylated sydowic acid aspergoterpenin C	aromatic bisabolene-type sesquiterpenoid	Aspergillus versicolor SD-330	marine sediment sample collected from the South China Sea at a depth of 1487 m	2019	exhibited selective inhibitory activities against zoonotic pathogenic bacteria such as Aeromonas hydrophilia, E. coli, Edwardsiella tarda and Vibrio harveyi, with the MIC valuesranging from 1.0 to 8.0 µg/mL.	45
(7S,11S)-(+)-12-hydroxysydonic acid					exhibited some selective activities against the zoonotic pathogenic bacteria	
engyodontiumone I					exhibited selective inhibitory activities against zoonotic	

chaetominine A sphingofungin I	alkaloids imminolactones	Aspergillus fumigatus MF029	isolated from a marine sponge sample of H.		pathogenic bacteria such as Aeromonas hydrophilia, E. coli, Edwardsiella tarda and Vibrio harveyi, with the MIC valuesranging from 1.0 to 8.0 µg/mL not active as antimicrobial	46
emodin	Anthraquinones		perleve collected from the Bohai Sea, China.		displayed moderate antibacterial activities against MRSA and S. aureu with MIC values of 50 μ g/mL, and significant activity against BCG with MIC value of 1.25 μ g/mL	
chaetominine	alkaloids				not active as antimicrobial	
trypacidin	diphenyl ethers or seco- anthraquinones				showed moderate antibacterial activities against MRSA and S. aureu with MIC values of 50	
					μg/mL, and significant activities against against B. subtilis and BCG (potential antitubercular activity) with MIC values of 12.5 and 1.25 μg/mL, respectively	
Asperfurandiones A	furandione analogs	Aspergillus versicolor	isolated from a coastal	2018	showed moderate antifungal	47
Asperfurandiones B			sediment collected at Dongji Island, China		activity against Gaeumannomyces graminis, Cryptococcus neoformans, and C. albicans with MIC values of 64 µg/mL	47
aspergillolide	12-membered macrolide	Aspergillus sp. S-3-75	isolated from the intestine		no significant	48
2,4-dihydroxy-6-methylacetophenone	Miscellaneous		of sea cucumber at 44.42		immunosuppressive effects at	
pannorin	Naphthopyrones		W, 60.54 S in the		concentrations 10 µmol,1.0	
2-hydroxy-4-(3-hydroxy-5-methylphenoxy)-6-methylbenzoic acid	Miscellaneous		Antarctic		on splenocyte proliferation	
3,3'-dihydroxy-5,5'-dimethyldiphenyl ether						
aloesone	chromones					
aloesol						
acremolin	alkaloids					
cyclo-(L-Trp-L-Phe)	peptides					
cyclo-(L-Trp-L-Leu)						
asperpene D	Miscellaneous	Aspergillus sp. SCS-KFD66	isolated from a bivalve mollusk, Sanguinolaria	2019	Not active as antioxidant or anti cholinesterase or antidiabetic	49

asperpene E			chinensis, collected from Haikou Bay		at a concentration of 50 µg/ml, showed weak inhibitory activities against AChE, with an inhibition rate of 19.5% (tacrine as positive control, IC50 0.02 mM), and showed DPPH radical Scavenging activity, with IC50 value of 0.48 mM (ascorbic acid as positive control, IC50 0.04 mM).	
niveoglaucins A	auroglaucin-derived compounds	Aspergillus niveoglaucus	Vietnamese marine sediment	2018	increased viability of 6-OHDA- treated cells by 20–25% (Neuroprotective effect)	50
niveoglaucins B					NA	
5-hydroxy-6-(3-methylbut-2-enyl)-2-(pent-1-enyl)benzofuran-4- carbaldehyde	benzfurans				Not active as neuroprotective	
flavoglaucin	prenylated benzaldehyde derivative				increased viability of 6-OHDA- treated cells by 20–25% (Neuroprotective effect)	
tetrahydroauroglaucin					Not active as neuroprotectve	
aspergin						
isodihydroauroglaucin						
α-CPA	cyclopiazonic acids	Aspergillus oryzae HMP-F28	marine sponge Hymeniacidon perleve		NA	51
β-CPA			collected from the Bohai			
speradine A			Sea off the shore at			
3-hydroxysperadine A			Lingshuiqiao in Dalian, China			
Sorbicillin	Sorbicillinoids	A. protuberus MUT 3638	Barents sub-Sea sediments			52
Sorbicillinol						
Dihydrosorbicillinol						
Oxosorbicillinol						
Sorbicillactone A						
Bisvertinol						
Bisvertinolone					display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 µg/mL	
Dıhydrobisvertinolone					NA	
4-deoxyterphenyllin	p-terphenyl derivates	Aspergillus candidus	the Atlantic Ocean (_3542	2019	did not show anti-proliferative	53
4-deoxyterphenyllin 4''-dehydroxyterphenyllin	p-terphenyl derivates	Aspergillus candidus	the Atlantic Ocean (_3542 m)	2019	did not show anti-proliferative effect	53

prenylterphenyllin					effect against four cancer cells of Hela, Eca-109, Bel-7402, and PANC-1 with IC50 values ranging from 5.5 μ M to 9.4 μ M showed potent antiproliferative effect against four cancer cells of Hela, Eca-109, Bel-7402, and PANC-1 with IC50 values ranging from 5.5 μ M to 9.4 μ M	
versiperol A	biphenyl derivative	Aspergillus versicolor	deep-sea sediment of the Pacific Ocean	2018	showed moderate anti-S. aureus with MIC value of 8 µg/mL	54
2,4-dimethoxyphenol	phenols		collected at a depth of at a		displayed weak inhibition with	
diorcinol	biphenyl derivatives		depth of 2721 m		MIC values of 64 µg/mL	
3,4-dimethoxyphenyl α-D-ribofuranoside	phenolic glycosides	Aspergillus amstelodami AUMC	The leaf parts of the mangrove plant Avicennia marina were collected from kilo 17, Safaga, Red Sea, Egypt	2019	selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 52.6±6.64 µM	55
3β-(β-D-glucopyranosyloxy)-olean-12-ene-23,28,30-trioic acid	triterpenoidal glycosides				did not show any significant anti-allergic activity in RBL-2H3 cells	
echinulin	indole-diketopiprazine				selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 98.0±1.16 μM did not show any significant anti-allergic activity in RBL-2H3 cells	
tardioxopiperazine B					selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 30.8±5.57 μM did not show any significant anti-allergic activity in RBL- 2H3 cells	
arestrictin A						
neochinulin D					selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 112.0±0.22 µM	

					did not show any significant anti-allergic activity in RBL- 2H3 cells	
variecolorin O					selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 38.5±6.08 µM	
					did not show any significant anti-allergic activity in RBL- 2H3 cells	
claudine A	indole derivatives					
uracil	nucleotides				selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 144.7±2.35 µM	
					anti-allergic activity in RBL- 2H3 cells	
thymine						
adenine					selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were, 100.4±3.05 μM did not show any significant anti-allergic activity in RBL-2H3 cells	
blumenol A	isoprenoids					
stigmasterol-3-O-β-D-glucoside	sterol glucoside					
mequinol	4-OH-anethole					
ferulic acid	phenolic acid					
Questin	Anthraquinones	Aspergillus flavipes HN4-13	Marine derived		exhibited favourable antibacterial and bactericidal activity against V. harveyi by disrupting the cell wall and membrane, which caused the destruction of permeability and integrity of cell wall and membrane, resulting in the leakage of intracellular biological components and change of cell morphology (MIC = 31.25 ug/mL)	56
4'-Chloroasterric Acid	diphenyl ethers	A. flavipes	isolated from coastal	2020	showed moderate to strong	57

methyl chloroasterrate penicillither iizukine A asterric acid monomethylosoic acid butyl 2,4-dichloroasterrate 2,4-dichloroasterrate 2,4-dichloroasterrate geodin hydrate monochlorsulochrin dihydrogeodin methyl (2-chloro-1,6-dihydroxy-3-meth- ylxanthone)-8- carboxylate	benzophenones xanthones		sediment collected in Dalian, Liaoning Province of China		antibacterial effects on different Gram-positive bacteria with MIC values that ranged from 3.13 to 50 µg/mL	
methyl (4-chloro-l,6-dihydroxy-3-methylxanthone)-8- carboxylate						
malformin C	polypeptides	A. niger 15F41-1-3	was isolated from an unidentified marine sponge, which was		isolated for its previous potent cytotoxicity but NA IN this study	58
TMC-256A1	naphtho-γ-pyrones		collected at North Pagai		NA	
desmethylkotanin	coumarine derivatives	-	coculture with Mycobacterium smegmatis			
aurasperone C	bis-naphtho-γ-pyrones					
Isodihydroauroglaucin	prenylated benzaldehyde derivative	A. ruber (H-1)	isolated from gorgonians (XS-2009-13) collected from the Xisha Islands	2018	showed significant antiviral activity against HSV-1 virus with EC ₅₀ values of 4.73 μ M. showed moderate cytotoxic activities against Vero cell lines showed weak inhibitory activity towards B. cereus and S. typhimurium with the same MIC value of 12.5 μ M	59
Flavoglaucin					showed significant antiviral activity against HSV-1 virus with EC_{50} values of 6.95 μ M. showed moderate cytotoxic activities against Vero cell lines	
Erythroglaucin	Anthraquinones				weak as antibacterial	
Physcion						
Neoechinulin A	indole-diketopiprazine					
Echinulin						
8"-hydroxy-9"-en-butyrolactone I	butyrolactones	Aspergillus sp	Marine derived		NA	60
butyrolactone VII						
3-hydroxy-4-(4-hydroxyphenyl)-5-methoxycarbonyl-5-(4- hydroxy-3-formylbenzyl)-2,5-dihydro-2-furanone						

butyrolactone III						
epicoccolide A epicoccolide B	polyoxygenated polyketides	Asperginus interonesiensis	alvarezii collected of Van Phong bay, Khanh Hoa, Vietnam	2019	exhibited meaningful cytotoxic activity with the IC50 values = $4.01, 4.08, 4.71 \mu g/mL$ against Hep-G2, LU-1, Vero cells exhibited meaningful cytotoxic activity with the IC ₅₀ values = $4.66 \mu g/mL$ against	61
					Vero cells	
2-O-methylbutyrolactone II					not active as cytotoxic	
NC3B					exhibited meaningful cytotoxic activity with the IC ₅₀ values = $3.97, 4.09 \mu$ g/mL against Hep- G2, , Vero cells	
epicoccone B					not active as cytotoxic	1
(22E,24R)-5α,8α-epidioxy-24-methyl-cholesta-6,22-dien-3β-ol						
4-hydroxybenzaldehyde						
rubrofusarine B	naphto-c-pyrones	Aspergillus foetidus KMM 4694	marine-derived		induce ROS production in these cells in cytotoxic concentration, 10.53% at 100 μM	62
TMC 256 A1					not active as cytotoxic	
fansecinones A					induce ROS production in these cells in cytotoxic concentration, at 12.53% at 10 μ M	
fansecinones B					not active as cytotoxic	
aurasperones A						
aurasperones B						
aurasperones F						
dianhydro-aurasperone C						
asperpyrone B						
aspergillspins A	b-carboline alkaloids	Aspergillus sp. SCSIO 41501	gorgonian Melitodes		not active as cytotoxic or	63
aspergillspins B			squamata collected from		antibacterial	
aspergillspins C	quinolone alkaloids		the South China Sea,			
aspergillspins D			Sanya (18_11 ⁻ N,		NA	
aspergillspins E			Province China			
aspergillspins F	isocoumarins		r tovince, ennia		not active as cytotoxic or	
aspergillspins G					antibacterial	
(3S)-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid	Alkaloids				NA	
transtorine						
marinamide						
methyl marinamide						
2 R-(2-hydroxypropan-2-yl)-6,7-dihydroxymethyl-2,3- dihydrobenzofuran	dihydrobenzofuran derivative	Aspergillus ustus KMM 4664	sediment (Sea of Okhotsk)		showed non-significant ability of inhibition of the ability of	64

emericellamide A	depsipeptide				spermatozoa to fertilize egg- cells of of the sea urchin S.	
12-hydroxyalbrassitriol	drimanes sesquiterpenes				intermedius.	
2α,9α,11-trihydroxy-6-oxodrim-7-ene						
9,11-dihydroxy-6-oxodrim-7-ene						
11.12-O-isopropylidenealbrassitriol	artifact drimane derivatives				NA	
11,12-O-isopropylidene-6-epi-albrassitriol ester of (E,E)-6,7- dihydroxy-2,4-octadienoic acid					showed significant ability of inhibition of the ability of spermatozoa to fertilize egg- cells of of the sea urchin S. intermedius. with IC_{50} value 21 μ M.	
sydowiones A	2-pyrone derivatives	Aspergillus sydowii SCSIO 00305	the South China Sea gorgonian Verrucella unbracculum		showed moderate toxicity towards brine shrine naupalii with LC_{50} values of 19.5, μM showed antioxidant activity against (DPPH) radicals with IC_{50} values of 46.0 μM	65
sydowiones B					showed moderate toxicity towards brine shrine naupalii with LC ₅₀ values of 14.3, μ M showed antioxidant activity against (DPPH) radicals with IC ₅₀ values of 46.6 μ M	
sydowione C	cyclopentenone derivative				showed moderate toxicity towards brine shrine naupalii with LC_{50} values of 8.3 μ M	
6-methoxyl austocystin A	xanthones				showed moderate toxicity towards brine shrine naupalii with LC ₅₀ values of 2.9 µM	
paecilpyrone A	2-pyrone derivatives				NA	
austocystin A	xanthones					
3-hydroxy pinselin		Aspergillus versicolor MF160003	a sediment sample collected from China Bohai Sea		not active as antimicrobial showed moderate bioactivities against BCG with MIC values of 40 μg/mL showed moderate bioactivities against BCG with MIC values of 20 μg/mL	66
ochramides A	pyrazin-2(1H)-one derivatives	Aspergillus	marine coral-derived	2018	Not active as antimicrobial	67
ochramides B		ochraceus LCJ11-102			showed antimicrobial activities against Enterobacter aerogenes	

					with the MIC = $40.0 \ \mu M$	
ochramides C					Not active as antimicrobial	
ochramides D						
ochralate A					showed antimicrobial activities	
					against Enterobacter aerogenes	
					with the MIC = $18.9 \mu\text{M}$	
aluminiumneoaspergillin					showed antimicrobial activities	
					against Enterobacter aerogenes	
					with the MIC = $20.1 \mu\text{M}$	
flavacol					Not active as antimicrobial	
3-isobutyl-6-(1-hydroxy-2-methylpropyl)-2(1H)-pyrazinone						
asperochrins D	Polyketides	Aspergillus sp. ZF-79	unidentified marine	2019	show obvious activity against	68
			sponge in the Xisha		Chromobacterium violaceum.	
			Islands, Hainan province,		the MIC = $50 \mu\text{M}$	
asperochrins E			in China		Not active as anti	
					Chromobacterium violaceum	
asperochrins F					show obvious activity against	
					Chromobacterium violaceum.	
					the MIC = $100 \mu\text{M}$	
(3K,4K)-4,7-ainyaroxymellein					show obvious activity against	
					the MIC = 50 µM	
asperochrin A					show shows activity activity	
astenoxin					Chromobostorium vielossum	
					the MIC = 6.25 µM	
asteltovin B					Not active as anti	
asterioxin D					Chromobacterium violaceum	
(+)-tylonilusin D	diphenolic derivative	Aspergillus sp. SE-5929	marine-derived	2018	exhibited strong PTP1B	69
	alphenone derivative	risperginus sp. or 5725	mume derived	2010	inhibitory activity with $IC_{50} =$	
					$8.1 \pm 0.4 \mu\text{M}$	
funalenone	phenalenones				exhibited strong PTP1B	
	1				inhibitory activity with $IC_{50} =$	
					$6.1 \pm 0.3 \ \mu M$	
rubrofusarin B	polyketide naphthopyrones				exhibited strong PTP1B	
					inhibitory activity with $IC_{50} =$	
					$6.5 \pm 0.3 \ \mu M$	
TMC-256A1					exhibited strong PTP1B	
					inhibitory activity with $IC_{50} =$	
					$5.1 \pm 0.3 \mu\text{M}$	
aurasperone F					exhibited strong PTP1B	
					inhibitory activity with $IC_{50} =$	
					$7.9 \pm 0.4 \mu W$	
Ionsecin					exhibited strong PTP1B	
					inhibitory activity with $IC_{50} =$	

					$3.3 \pm 0.2 \ \mu M$	
malformin Al	Polypeptides				exhibited strong PTP1B inhibitory activity with $IC_{50} = 5.2 \pm 0.5 \ \mu M$	
carbonarone A	γ-pyrone				Not active as PTP1B inhibitory	
pyranonigrin A					activity	
campyrone C	α- pyrone					
campyrone A						
protuboxepin C	diketopiperazine alkaloids	Aspergillus sp SCSIO XWS02F40	sponge-derived		no inhibitory activity against A549 cells with $IC_{50} = 100 \ \mu M$. IC_{50} against HeLa cells = 61 μM	70
protuboxepin D					no inhibitory activity against A549 cells with $IC_{50} = 190 \ \mu M$. IC_{50} value against HeLa cells = 114 μM	
methyl chloroasterrate	diphenyl derivatives	Aspergillus sp	soft coral Sinularia sp.		not active as antibacterial	71
methyl dichloroasterrate			collected from the South			
methyl 3-chloroasterric acid			China Sea			
asterric acid						
dichloroasterric acid					showed selectively inhibitory activity towards S. aureus with the MIC value of 12.5 μ M.	
geodin methyl asterrate		Asnergillus sn	internal fresh tissue of the	2019	showed significant cytotoxic activity against six human cancer cell lines, including breast cancer cell BT474, large cell lung cancer cell NCI-H460, non-small cell lung cancer cell H-1975, chronic myelogenous leukemia cell K562, prostate cancer cell DU145, and lung cancer cell DU145, and lung cancer cell A549 with IC ₅₀ = 8.88, 9.22, 9.96, 11.14, 14.44, and 11.05 μ M. not active as antifouling	72
methyl asterrate		Aspergillus sp	soft coral Sinularia sp	2019	not active as antifouling, antibacterial, cytotoxic	12
sulochrin					showed moderate activity against V. anguillarum and A. salmonicida with MICs of 15.06 and 30.12 μ M (Sea-Nine 211, MIC = 1.08 μ M) as antifouling	
					exhibited strong antibacterial activity against P. aeruginosa with MICs of 7.53 μ M (ciprofloxacin, MIC = 1.88 μ M)	

(–)-bis-dechlorogeodin	Diphenyl ethers				showed moderate activity against V. anguillarum and A. salmonicida with MICs of 15.15 and 30.30 μ M (Sea-Nine 211, MIC = 1.08 μ M) as antifouling exhibited strong antibacterial activity against P. aeruginosa with MICs of 3.78 μ M (ciprofloxacin, MIC = 1.88 μ M) displayed moderate activity against Jurkat, A549, and HeLa cells with IC ₅₀ values of 10.69, 10.69, and 3.56 μ M (adriamycin, IC ₅₀ = 0.53, 0.60, 0.86 μ M), respectively	
emodin	Anthraquinones				not active as antifouling,	
questinol	1				antibacterial, cytotoxic	
questin					-	
2-hydroxy-6-formyl-vertixanthone 12-O-acetyl-sydowinin	Xanthones	Aspergillus sydowii C1-S01- A7	deep sea-derived	2018	showed weaker activities than the positive control chloramphenicol with MIC values ranging from 15 to 32 µg/mL showed non-poent activities gainst HepG2, with IC_{50} = 32.7 ± 0.9 µg/mL showed weaker activities than the positive control chloramphenicol with MIC values ranging from 15 to 32 µg/mL showed non-poent activities gainst A549, HepG2, Hela cells with IC ₅₀ = 25.2 ± 0.9, 42.3 ± 0.6 33.6 ± 0.7 µg/mL	73
13-O-acetyl-sydowinin B					not active as, antibacterial, cytotoxic	
sydowinin B					showed weaker activities than the positive control erythromycin with MIC values in the range of 16–33 µg/mL against Vibrio strains	
pinselin					not active as, antibacterial,	
12-O-acetyl-AGI-B4					cytotoxic	
aspergillusone A					showed weaker	

			activities than the positive control chloramphenicol with MIC values ranging from 15 to 32 µg/mL	
AGI-B4			showed weaker activities than the positive control erythromycin with MIC values in the range of 16–33 µg/mL against Vibrio strains	
			showed weaker activities than the positive control chloramphenicol with MIC values ranging from 15 to 32 µg/mL	
			displayed selectively cytotoxic activity against A549 cell line with IC ₅₀ value below 10 μ M and stronger cytotoxic activities than the other xanthone derivatives for both A549 and HepG2 (IC ₅₀ = 30.7 ± 0.9 μ M) cell lines	
questin			showed non-poent activities gainst A549, HepG2, Hela cells with IC_{50} = 40.0 ± 0.3, 42.2 ± 0.5, 36.2 ± 0.9 µg/mL	
yicathin C			showed non-poent activities gainst A549 cell lines, with IC ₅₀ = $37.7 \pm 0.3 \ \mu g/mL$	
demethoxy-10-methoxy-wentiquinone C	polyketides		showed weaker activities than the positive control chloramphenicol with MIC values ranging from 15 to 32 µg/mL	
emodin	Xanthones		showed weaker activities than the positive control erythromycin with MIC values in the range of 16–33 µg/mL against Vibrio strains	
			showed weaker activities than the positive control chloramphenicol with MIC values ranging from 15 to 32 µg/mL	

				showed non-poent activities gainst Hela cell lines, with IC ₅₀ = $27.1 \pm 0.8 \ \mu g/mL$	
WIN 64821	diketopiperazine alkaloids			NA	
(+)-sydonic acid	Sesquiterpene derivatives				
(+)-dehydrosydonic acid					
sydowic acid					
disydonol B	bisabolane sesquiterpenoids				
diorcinol	biphenyl derivatives				
ergosterol peroxide	sterol				
b-sitosterol					
ergosta-7,22-dien-3b-ol					
ergosterol					
4-hydroxybenzaldehyde	aldehydes				
2-acetylaminobenzamide	amides				
terretonin D1	meroterpenoid	Aspergillus terreus ML-44	Marine-derived	it weakly inhibited the nitric	74
terretonin				oxide (NO) production of	
terretonin A				RAW264.7 macrophages	
terretonin D				stimulated by hpopolysaccharide (LPS), with inhibitory rates of $22, 34\%$ at 50 µg/mI	
Terretonin ()		Aspergillus terreus I GO13		showed only low activity against	75
		risperginus terretus EGO 15		P. aeruginosa and S. aureus	
				cervix carcinoma cell line KB-3-	
terretonins M				showed no or low activity	
terretonins N				against S. aureus P. aeruginosa	
terrelumamide A	peptides			C.albicans Saccharomyces	
terrein	Miscellaneous			cerevisiae Bacillus cereus, A.	
methyl-3,4,5-trimethoxyl-2-[2-(nicotinamide)benzamido]	Alkaloid			niger	
benzoate					
butyrolactones I	butyrolactones				
butyrolactones II					
butyrolactones III					
aspulvinone O	Butenolide derivatives				
ergosterol	Sterols				
ergost-4-ene-3-one	Sterols				
methyl linoleate	Fatty acids				
L-asparaginase	Enzymatic proteins	Aspergillus niger AKV-MKBU		NA	76

(+)-geodin	diphenyl ethers or seco- anthraquinones	Aspergillus versicolor (TA01- 14)	gorgonian Carijoa sp. (GX-WZ-2010001), which was collected from the South China Sea	2019	showed antibacterial activity against Staphylococcus albus, S. aureus, and Vibrio anguillarum with MIC values of 25.0 μM not exhibited AChE and Topo I inhibitory activities	77
chlorotrypacidin					showed antibacterial activity against Staphylococcus albus, S. aureus, and Vibrio anguillarum with MIC values of 25.0μ M displayed cytotoxic activity against tumor cell lines HCT- 116, HepG2, and HL-60, with IC ₅₀ values of 15.2, 17.6, and 18.5 μ M, respectively not exhibited AChE and Topo I inhibitory activities	
dichloroasterric acid	diphenyl ethers				not exhibited AChE and Topo I	
penicillither					inhibitory activities or as	
6'-chloroasterric acid					antibacterial and cytotoxic	
3'-(5'-chloro-4'-methyl-γ-resorcyloyl)-6'-hydroxy-m-anisic acid	benzophenones					
methyl ester						
dihydrogeodin						
1,7-dihydroxy-3-methoxy-6-methyl anthraquinone	anthraquinone					
isorhodoptilometrin						
methyl-6-acetyl-4-methoxy-5,7,8-trihydroxynaphthalene-2- carboxylate	naphthalene derivatives					
prenylterphenyllins F	prenylated p-terphenyls	Aspergillus candidus LDJ-5	root of Rhizophora apiculata Blume collected from Sanya Bailu Park of Hainan Province, China		exhibited activities with $IC_{50} =$ 19.9, 11.0, 9.3, 12.4, 10.2, 10.4, 8.3, 7.1 μ M against the L-02, MGC-803, HCT-116, BEL- 7402, A549, SH-SY5Y, HeLa, U87, cell lines, respectively	78
prenylterphenyllins G					exhibited activities with $IC_{50} =$ 29.7, 12.5, 16.9, 12.6, 16.3, 12.4, 11.5 μ M against the L-02, MGC-803, HCT-116, BEL- 7402, A549, SH-SY5Y, HeLa, cell lines, respectively	
prenylcandidusins D					not active as cytotoxic against L-02, MGC-803, HCT-116,	

			BEL-7402, A549, SH-SY5Y,			
			HeLa, U87, K562, and HL-60			
prenylterphenyllins H			Was highly active against			
			Proteus species, P.aeruginosa, B.			
			subtilis, Monilia albicans, and			
			Mycobacterium			
			phlei with MIC = $22 \mu g/mL$			
			exhibited the best activities with			
			IC50 values of 3.5, 0.7, 0.5, 0.4,			
			0.6, and 2.0 μ M against the L-			
			02, MGC-803, HC1-116, A549,			
			SH-SYSY, and HeLa cell lines,			
nronvitornhonvilling I	-		Was active against Protous			
prenynerphenynnis i			species Recruciness R			
			subtilis Monilia albicans and			
			Mycobacterium phlei			
			exhibited activities with IC _{co} =			
			24 4 14 5 14 7 11 1 14 8			
			$16.7, 11.4 \mu\text{M}$ against the L-02,			
			MGC-803, HCT-116, BEL-			
			7402, A549, SH-SY5Y, HeLa,			
			cell lines, respectively			
prenylterphenyllins J			Was active against Proteus			
			species, P.aeruginosa, B.			
			subtilis, Monilia albicans, and			
			Mycobacterium phlei			
			exhibited activities with $IC_{50} =$			
			8.1, 6.2, 7.6, 15.6, 8.5, 15.9 μM			
			against MGC-803, HCT-116,			
	-		A549, SH-SY5Y, U87.			
prenyicanoiousins E			exhibited activities with $IC_{50} =$			
			10.7, 10.3, 19.0, 14.9, 19.1, 17.0, 14.0, 10.3, 5.0 μ M against			
			L-02 MGC-803 HCT-116			
			BEL-7402, A549, SH-SY5Y,			
			HeLa, U87.			
prenylcandidusins F			not active as cytotoxic against			
1 5			L-02, MGC-803, HCT-116,			
			BEL-7402, A549, SH-SY5Y,			
			HeLa, U87, K562, and HL-60			
prenylcandidusins G			exhibited activities with $IC_{50} =$			
			17.9, 1.4, 0.9, 16.0, 2.8, 2.2,			
			10.1, 3.4 µM against the L-02,			
			MGC-803 HCT-116 BEL-			
					7402, A549, SH-SY5Y, HeLa, U87, cell lines, respectively	
---	-----------------------	----------------------------------	---	------	---	----
asperaustins A asperaustins B asperaustins C austin isoaustinone (5'S)-isoaustinone austinoneol A preaustinoid A2 precalidodehydroaustin dehydroaustin	meroterpenoids	Aspergillus sp. fungus ZYH026	superficial mycobiota of the brown alga Saccharina cichorioides f. sachalinensis collected from the South China Sea		NA Not showed notable inhibitory activity against AChE	79
Aspermeroterpene A aspermeroterpenes B aspermeroterpenes C		Aspergillus terreus GZU-31-1	Marine derived		showed significant inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells compared to positive control. IC_{s0} values ranging from 13.4 to 17.8 μ M compared to positive controls (indomethacin, $IC50 = 24.0 \ \mu$ M)	80
Petromurin C	bis-indolyl benzenoid	Aspergillus candidus KUFA0062	the marine sponge Epipolasis sp.	2020	Induces Protective Autophagy and Apoptosis in FLT3-ITD- Positive AML: Synergy with Gilteritinib	81
aspergixanthones A	prenylxanthones	Aspergillus sp. ZA-01	the Bohai Sea of Huanghuagang, Hebei Province of China	2018	displayed selective cytotoxicity against the A-549 cell line with the IC ₅₀ value of 1.8μ M not active as antibacterial against M. lysodeikticus, B. anthraci, S. typhi, and E. aerogenes	82
aspergizantiones D					to any of the above cell lines ($IC_{50} > 10.0 \ \mu$ M) not active as antibacterial against M. lysodeikticus, B. anthraci, S. typhi, and E. aerogenes	
aspergixanthones C					showed broad-spectrum cytotoxicities against five tumor cell lines with the IC_{50} values ranging from 1.1 to 9.8 μM	

			not active as antibacterial against M. lysodeikticus, B. anthraci, S. typhi, and E.	
			aerogenes	
aspergixanthones D			exhibited very low cytotoxicity to any of the above cell lines $(IC_{50} > 10.0 \ \mu\text{M})$	
			not active as antibacterial against M. lysodeikticus, B. anthraci, S. typhi, and E. aerogenes	
aspergixanthones E			exhibited very low cytotoxicity to any of the above cell lines $(IC_{50} > 10.0 \ \mu\text{M})$	
			not active as antibacterial against M. lysodeikticus, B. anthraci, S. typhi, and E. aerogenes	
aspergixanthones F			showed cytotoxicity against the A-549 cell line with the IC_{50} value of 1.1 μ M	
			showed broad-spectrum cytotoxicities against five tumor cell lines with the IC_{50} values	
			ranging from 1.1 to 9.8 μM not active as antibacterial against M. lysodeikticus, B.	
			anumaci, S. typin, and E.	
aspergixanthones G	-		exhibited antibacterial activity against Micrococcus lysodeikticus with the MIC value of 0.78 µg/mL	
			exhibited very low cytotoxicity to any of the above cell lines $(IC_{50} > 10.0 \ \mu\text{M})$	
			showed antibacterial activity against M. lysodeikticus, B. anthraci, S. typhi, and E.	
			$0.78 \pm 12.5 \le 6.13$ and 6.13 ± 10 /mJ	
aspergixanthones H			exhibited very low cytotoxicity to any of the above cell lines	
			$(IC_{50} > 10.0 \ \mu M)$	

shamixanthone					showed antibacterial activity against M. lysodeikticus, B. anthraci, S. typhi, and E. aerogenes, with MIC values of 6.13, 12.5, 6.13 and 6.13 µg/mL exhibited very low cytotoxicity to any of the above cell lines $(IC_{50} > 10.0 \mu M)$ not active as antibacterial against M. lysodeikticus, B. anthraci, S. typhi, and E. aerogenes	
cotteslosin C	cyclic pentapeptide	A. versicolor and cocultured with B. subtilis	the sponge Agelas oroides, which was collected at a depth of 10m in Aliağa- İzmir, Turkey	2019	revealed no cytotoxic activity against the mouse lymphoma cell line L5178Y Not active as antibacterial	83
cotteslosin A					against certain gram positive bacteria	
22-epi-aflaquinolone B	aflaquinolone	-				
aflaquinolone A						
aflaquinolone F						
aflaquinolone G						
3-O-methylviridicatin						
9-hydroxy-3-methoxyviridicatin						
Isoversicolorin B	Anthraquinones					

68 O Dimethylkinglarin				
0,8-O-Dimeniyibipolarin				
bipolarin				
versiconol				
versiconor				
	-			
versiconol acetate				
versicolorin B				
			displayed inhibitory activity	
			against S aureus with MIC = 50	
			M	
	-		μινι	
8-O-methylversicolorin B			exhibited mild cytotoxic activity	
			against the mouse lymphoma	
			cell line L5178Y, with IC ₅₀	
			values = 21.2 μ M	
			Not active as antibacterial	1
			against certain gram positive	
			bacteria	
	-			
averufin			revealed no cytotoxic activity	
			against the mouse lymphoma	
			cell line L5178Y	
			displayed inhibitory activity	
			against several gram-positive	
			bacteria with MIC values	
			ranging from 12.5 to 25 µM	
endocrocin			revealed no cytotoxic activity	
			against the mouse lumpheme	
			against the mouse tymphoma	
			cell line L51/8Y	
			Not active as antibacterial	
			against certain gram positive	
			bacteria	
O-demethylsterigmatocystin	Xanthones		exhibited substantial cytotoxic	
			activity against the mouse	
			lymphoma cell line I 5179V	
			in to the contract of the state	
			with IC_{50} values = 5.8 μ M	

			Not active as antibacterial	
			against certain gram positive	
	-		bacteria	
sterigmatocyctin			exhibited strong cytotoxic	
			lymphoma cell line L 5178V	
			with $IC_{ro} = 2.2 \ \mu M$	
			Not active as antibacterial	
			against certain gram positive	
			bacteria	
sterigmatin			exhibited strong cytotoxic	
			activity against the mouse	
			lymphoma cell line L5178Y,	
			with IC_{50} values = 2.3 μ M	4
			Not active as antibacterial	
			against certain gram positive	
	-		exhibited strong cytotoxic	
AGI-B4			activity against the mouse	
			lymphoma cell line L5178Y,	
			with IC ₅₀ values = $2.0 \mu M$	
			Not active as antibacterial	
			against certain gram positive	
	-		bacteria	
sydowinin B			revealed no cytotoxic activity	
			against the mouse lymphoma	
			Cell line L51/8Y	
notoamide D	Indole alkaloids		against certain gram positive	
motorinido D			bacteria	
sperannide B	Indole alkaloida			
stephacidin A	prenylated indole alkaloids			
notoamide R	Indole alkaloids			
protuboxepin B	diketopiperazine alkaloids			
3,10-dehydrocyclopeptine	benzodiazepine alkaloid			
penicillanone	Benzophenone			
diorcinol D	biphenyl derivatives		revealed no cytotoxic activity	
			against the mouse lymphoma	
			cell line L5178Y	
			displayed inhibitory activity	
			against several gram-positive	
			bacteria with MIC values	
			Tanging from 12.5 to 50 µM	4

diorcinol G					revealed no cytotoxic activity against the mouse lymphoma cell line L 5178Y	
					displayed inhibitory activity	
					against several gram-positive bacteria with MIC = $12.5 \mu M$	
diorcinol I					revealed no cytotoxic activity	
					cell line L5178Y	
					displayed inhibitory activity	
					bacteria with MIC values	
					ranging from 25 to 50 µM	
radiclonic acid	Fatty acid				revealed no cytotoxic activity	
					cell line L5178Y	
					Not active as antibacterial	
					against certain gram positive	
17-hydroxynotoamide D	prenylated indole alkaloids	Aspergillus sulphureus KMM	Marine derived then	2018	not active as cytotoxic human	84
	1 5	4640	coculture with Isaria felina		prostate cancer cells 22Rv1	
17-O- ethylnotoamide M			Marine derived then		is able to inhibit the colony	
			coculture with Isaria ferma		cancer cells 22Rv1 at non-	
					cytotoxic	
					concentration of 10 µM by 25%	
					of 22Rv1 prostate cancer cells at	
					a concentration of	
10.0 sectorstantionide					100 μM	
10-O-ethylsclerotiamide					INA	
10-O-ethylnotoamide R					not active as cytotoxic human	
() netromide D					prostate cancer cells 22Rv1	
(-)-notoamide B					of 22Rv1 prostate cancer cells at	
					a concentration of	
					100 μM	
denyaronoloamide C					prostate cancer cells 22Rv1	
notoamide C					inhibited the colony formation	
					of 22Rv1 prostate cancer cells at	
					100 μM	
notoamide D					not active as cytotoxic human	

notoamide F notoamide Q 17-epi-notoamide Q notoamide M					prostate cancer cells 22Rv1 NA inhibited the colony formation of 22Rv1 prostate cancer cells at a concentration of 100 μM is able to inhibit the colony formation of human prostate cancer cells 22Rv1 at non- cytotoxic concentration of 10 μM by 55% inhibited the colony formation of 22Rv1 prostate cancer cells at a concentration of 100 μM	
SF5280-415	diketopiperazine dimer	Aspergillus sp. SF-5280	unidentified sponge that was collected at Cheju Island, Korea		showed inhibitory effects against PTP1B activity (for diabetes and obesity) with IC ₅₀ = $14.2 \pm 0.7 \mu$ M showed inhibitory effects	85
5F5200-451					against PTP1B activity (for diabetes and obesity) with $IC_{50} =$ $12.9 \pm 0.7 \mu M$	
misszrtine A	indole alkaloid	Aspergillus sp. SCSIO XWS03F03	sponge which was collected from the sea area Xuwen County, Guangdong Province, China		exhibited a potent antagonistic activity on HL60 ($IC_{50} = 3.1 \mu M$) and LNCaP ($IC_{50} = 4.9 \mu M$) cell lines.	86
aspergimarins A	dihydroisocoumarins	Aspergillus sp. NBUF87	the sponge Hymeniacidon sp. obtained from the Paracel Islands in the South China Sea	2019	showed significant inhibitory effects on the lateral root growth of Arabidopsis thaliana Columbia-0 (Col-0) AT 100 μ M inactive in vitro against acetylcholinesterase (AChE) (IC ₆₀ > 100 mM) four different	87
aspergimarins B					types of human-derived cancer	
aspergimarins C					cell lines (IC ₅₀ > 50 μ M), as well	
aspergimarins D					as methicillin-resistant S. aureus and E. coli (MIC > 50 µg/mL), and Plasmodium falciparum W2 (EC50 > 100 µg/mL)	
aspergimarins E					showed significant inhibitory effects on the lateral root growth of Arabidopsis thaliana	

					Columbia-0 (Col-0) AT 100 μM	
					notable inhibition against the primary root growth of Col-0.	
					inactive in vitro against acetylcholinesterase (AChE)	
aspergimarins F					$(IC_{50} > 100 \text{ mM})$, four different types of human-derived cancer	
penicimarin B					cell lines (IC ₅₀ > 50 μ M), as well	
penicimarin D					as methicillin-resistant S. aureus	
penicilloxalone B					and E. coli (MIC > 50 μ g/mL),	
(R)-3-(3-hydroxypropyl)-8-hydroxy-3,4-dihydroisocoumarin					(EC50 > 100 μ g/mL)	
aspersecosteroids A	$11(9 \rightarrow 10)$ -abeo-5,10-	Aspergillus	sponge derived	2018	demonstrated inhibitory effects	88
aspersecosteroids B	secosteroids with dioxatetraheterocyclic ring	flocculosus 16D-1			on key pro-inflammatory cytokine production in THP-1	
asperflosterol	ergosteroid	-			CCII3	
asperflocin	asymmetric diketopiperazine dimer	Aspergillus versicolor 16F-11	inner tissue of the sponge Phakellia fusca obtained from Yongxing Island, the South China Sea		showed moderate cytotoxic activity against A375 cell line with an IC ₅₀ value of 10.29 \pm 2.37 μ M.	89
WIN 64821					showed no cytotoxic activity against A375 cell line	
preussin C	pyrrolidine alkaloids	Aspergillus flocculosus 16D- 1	Marine Sponge Phakellia fusca		. showed moderate inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 21 \ \mu M$, but was inactive against normal tumor cell lines and fungi.	90
preussin D					showed moderate inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 22 \ \mu M$, but was inactive against normal tumor cell lines and fungi	
preussin E					showed moderate inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 8.2 \mu M$, but was inactive against normal tumor cell lines and fungi.	
preussin F					showed moderate inhibitory	
· •						

preussin G					activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 9.9 \ \mu$ M, but was inactive against normal tumor cell lines and fungi. showed strong inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 0.11$	
preussin H					normal tumor cell lines and fungi.	
					activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 14 \mu M$, but was inactive against normal tumor cell lines and fungi.	
preussin I					showed strong inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 0.19$ μ M, but was inactive against normal tumor cell lines and fungi.	
(11R)/(11S)-preussin J					showed strong inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with IC ₅₀ = 2.3 μ M, but was inactive against normal tumor cell lines and fungi.	
(11R)/(11S)-preussins K					showed moderate inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with $IC_{50} = 16 \mu$ M, but was inactive against normal tumor cell lines and fungi.	
himeic acid A	2,5-disubstituted 4-pyrone	Aspergillus	the mussel Mytilus edulis		NA	91
himeic acid B	compound with fatty acid and amide side chains	japonicus MF275	galloprovincialis			
himeic acid C	4-pyridone derivative of himeic acid A					
Chaetominine	quinazolinone alkaloid	Aspergillus fumigatus CY018	Marine derived	2019		92

taichunamide H	indole alkaloid	A. versicolor HDN11-84	rhizosphere soil of the mangrove plant Thespesia populnea	2018	was screened for cytotoxicity (against NB4, HL-60, Hela, K562, and HCT-116 cell lines), antibacterial activity (on E. coli, Bacillus subtilis, MRSA, and Mycobacterium smegmatis), and activity against anti-H1N1 influenza virus but showed no activity in the above-mentioned bioassays.	93
Asperversiamides A	prenylated indole alkaloids	Aspergillus versicolor	the mud of the South China Sea		not exhibited iNOS inhibitory activities	94
Asperversiamides B	-				exhibited potential iNOS inhibitory activities and inhibited the release of NO in LPS-induced Raw264.7 WITH $IC_{50} = 9.95 \pm 0.46$, 17.24 ± 1.32 μM	
Asperversiamides C					exhibited potential iNOS inhibitory activities and inhibited the release of NO in LPS-induced Raw264.7 WITH $IC_{50} = 16.58 \pm 0.57, 25.09 \pm 2.21$	
Asperversiamides D					not exhibited iNOS inhibitory	
Asperversiamides E					activities	
Asperversiamides F					exhibited potential iNOS inhibitory activities and inhibited the release of NO in LPS-induced Raw264.7 WITH $IC_{50} = 13.86 \pm 1.22, 23.72 \pm 1.89$	
Asperversiamides G					exhibited a potent inhibitory effect against iNOS with an IC_{50} value of 5.39 μ M	
Asperversiamides H					not exhibited iNOS inhibitory	
dihydrocarneamide A					activities.	
deoxybrevianamide E						
asteltoxin G	trienic α -pyrone derivative	A. ochraceopetaliformis	inner part of the marine sponge Reniochalina sp.		did not show cytotoxicity against THP-1 cells after 24 h	95
asteltoxin			collected from the Xisha Islands in the South China		treatment. Not exhibited anti- inflammatory activity	
asteltoxin B			Sea		against IL-6 and TNF-α	
asteltoxin C					expression of the LPS-induced THP-1 cells	

ochratoxin A1	ochratoxin derivative			exhibited anti-inflammatory activity against IL-6 and TNF- α expression of the LPS-induced THP-1 cells with inhibitory rates of 74.4 and 67.7% at concentration of 10 μ M did not show cytotoxicity against THP-1 cells after 24 h treatment
ochratoxin A				did not show cytotoxicity
ochratoxin A methyl ester				against THP-1 cells after 24 h treatment. Not exhibited anti- inflammatory activity against IL-6 and TNF- α expression of the LPS-induced THP-1 cells
ochratoxin B				showed a significant decrease in the LPS-induced expression of IL-6 and TNF- α with inhibitory rates of 91.6, 72.8 did not show cytotoxicity against THP-1 cells after 24 h treatment
ochratoxin B methyl ester				showed a significant decrease in the LPS-induced expression of IL-6 and TNF- α with inhibitory rates of 89.7% 72.9% did not show cytotoxicity against THP-1 cells after 24 h treatment
1,2-dehydro-terredehydroaustin	austinoid meroterpenoids	Aspergillus terreus H010	mangrove endophytic fungus	exhibited weak inhibition effect against the production of nitric oxide (NO) in lipopolysaccharide (LPS)- induced RAW 246.7 mouse macrophages with an IC ₅₀ value of 42.3 µM the cytotoxicity against the RAW 246.7 cells was assayed and no affection of the cell viability was detected with the concentration up to 100 µM

				1		1
acetoxydehdroaustin B	meroterpenoids				NA	
1,2-dehydro-acetoxydehydroaustin B						
luteoride E	prenylated tryptophan derivative	Aspergillus terreus	was separated from the coral Sarcophyton subviride, which was collected from the coast of Xisha Island in the South		showed significant inhibitory potency with IC ₅₀ 24.64 μ M (LPS-induced NO production). Not active for α -Glucosidase inhibitory activity	97
versicolactone G	a butenolide derivative		China Sea		showed potent inhibitory potency with IC50 value of $104.8 \pm 9.5 \ \mu\text{M}$, which was lower than the positive control acarbose (IC50=154.7 ± 8.1 μ M) (α -glucosidase) showed significant inhibitory potency with IC50 = 15.72 μ M (LPS-induced NO production)	
(3E,7E)-4,8-dimethyl-undecane-3,7-diene-1,11-diol	linear aliphatic alcohol				showed significant inhibitory potency with IC50 = 18.62 μM (LPS-induced NO production). Not active for α-Glucosidase inhibitory activity	
asterrelenin	Alkaloid				not active as Inhibitory activity against LPS-induced NO production	
methyl 3,4,5-trimethoxy-2-(2- (nicotinamido)benzamido)benzoate					showed significant inhibitory potency with IC50 = 5.48 μM (LPS-induced NO production)	
14α-hydroxyergosta-4,7,22-triene-3,6-dione	sterols				showed significant inhibitory potency with IC50 = 26.83 μM (LPS-induced NO production)	
territrem A	Miscellaneous				showed significant inhibitory potency with IC50 29.34 μM (LPS-induced NO production)	
territrem B					not active as Inhibitory activity	
territrem C					against LPS-induced NO production	
lovastatin					showed significant inhibitory potency with $IC50 = 17.45 \mu M$ (LPS-induced NO production)	
monacolin L acid methyl ester					not active as Inhibitory activity	
monacolin L					against LPS-induced NO production	
Ochratoxin	Ochratoxin derivatives	Aspergillus alliaceus (teleomorph:	marine alga by Bioviotica GmbH		not active as cytotoxic against the HCT-116 colon cancer and	98

nalgiovensin nalgiolaxin	anthraquinone	Petromyces alliaceus)		SK-Mel-5 melanoma cell lines	
Allianthrone A	bianthrones				
allianthrones B	1				
allianthrones C	1				
ochraceopone F	α-pyrone merosesquiterpenoid	Aspergillus flocculosus	a sponge Stylissa sp. collected in Vietnam	had no anti-proliferative effect on human cancer cell lines up to	99
aspertetranone D	meroterpenoids			30 μg/mL exhibited weak osteoclast differentiation inhibitory activity at 10 μg/mL	
cycloechinulin	diketopiperazine alkaloids			had no anti-proliferative effect	
wasabidienone E	cyclohexadienone derivative,			on human cancer cell lines up to 30 μg/mL	
				differentiation inhibitory activity at 10 µg/mL	
mactanamide	diketopiperazine alkaloids			had no anti-proliferative effect	
				on human cancer cell lines up to $30 \ \mu g/mL$	
				showed a potent suppression effect of osteoclast	
				differentiation without any evidence of cytotoxicity	
asperphenone A	phenome derivatives	Aspergillus sp. YHZ-1.	unidentified mangrove	exhibited weak antibacterial	100
asperphenone B			plant from Hainan Island,	activity against four Gram-	
			China	positive bacteria, S. aureus	
				CMCC(B) 26003, S. pyogenes	
				ATCC19615, B. subtilis CICC	
				10283 and Micrococcus luteus,	
				with the MIC values higher than	
	-			32.0 μM	-
A ani gang ghomanhing A mathul actor	dilatamambalina dariyari	A sporgillus alabamansi-	frach innar tissue of the	INA showed inhibitions	101
4-epi-seco-snornepnine A metnyi ester	diketomorpholine derivarives	Aspergillus alabamensis	marine red also Commission	snowed inhibitions against	101
		EN-347	ianonicum collected at	M luteus) hand aquatic bacteria	
			Qingdao, China	(Ed. jetaluri and V	
			Qiliguao, Clillia	(Eu. Ictatuit and V.	
				ranging from 16 to 64 µg/mI	
				not showed inhibitions assignt	
				V anguillarum V	
				v. angumarum, v.	
				vulnificus (MIC > 64 μ g/mL)	
	I see a second se			(united (inter of µg/mE)	

4-epi-seco-shornephine A carboxylic acid			showed inhibitions against human pathogens (E. coli and M. luteus) hand aquatic bacteria (Ed. ictaluri and V. alginolyticus), with MIC values ranging from 16 to 64 µg/mL not showed inhibitions against V. anguillarum, V. parahaemolyticus, and V. vulnificus (MIC > 64 µg/mL)
28-acetoxy-12b,15a,25-trihydroxyergosta-4,6,8(14),22-tetraen-3- one	Highly Conjugated Ergostane- Type Steroid		showed inhibitions against human pathogens (E. coli and M. luteus) hand aquatic bacteria (Ed. ictaluri and V. alginolyticus), with MIC values ranging from 16 to 64 μg/mL not showed inhibitions against V. anguillarum, V. parahaemolyticus, and V. vulnificus (MIC > 64 μg/mL)
shornephine A	diketomorpholine derivarives		showed inhibitions against human pathogens (E. coli and M. luteus) hand aquatic bacteria (Ed. ictaluri and V. alginolyticus), with MIC values ranging from 16 to 64 μ g/mL not showed inhibitions against V. anguillarum, V. parahaemolyticus, and V. vulnificus (MIC > 64 μ g/mL)
hydroxyergosta-4,6,8(14),22-tetraen-3-one 25,28-dihydroxyergosta-4,6,8(14),22-tetraen-3-one 12b,15a,25,28-tetrahydroxyergosta-4,6,8(14),22-tetraen-3-one	Highly Conjugated Ergostane- Type Steroid		not showed inhibitions against human pathogens (E. coli and M. luteus) hand aquatic bacteria (Ed. ictaluri and V. alginolyticus) not showed inhibitions against V. anguillarum, V. parahaemolyticus, and V. vulnificus (MIC > 64 µg/mL). showed inhibitions against human pathogens (E. coli and M. luteus) hand aquatic bacteria

				(Ed. ictaluri and V. alginolyticus)	
candidusin D	bis-indolyl benzenoid	Aspergillus candidus KUFA	marine sponge Epipolasis sp., which was collected, by scuba diving at a depth of 15–20 m from the coral reef at Similan Island National Park (80390'09'' N, 97038'27'' E), Phang- Nga province, Southern Thailand	not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains showed cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	102
preussin C	hydroxypyrrolidine alkaloid			NA	
palmitic acid,	Fatty acids				
clionasterol	sterols				
ergosterol 5,8-endoperoxides					
chrysophanic acid	Anthraquinones			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains showed no cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
emodin				NA	
asterriquinol D dimethyl ether	bis-indolyl benzenoids			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains showed no cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	

petromurin C			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains showed cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
kumbicin B			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains	
			showed cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
kumbicin A			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains	
			showed no cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
2 [°] -oxoasterriquinol D methyl ether			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains	

				showed cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
kumbicin D				not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains	
				showed no cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
preussin	hydroxypyrrolidine alkaloid			exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains	
				HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	
(3S, 6S)-3,6-dibenzylpiperazine-2,5-dione	Miscellaneous			not exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains	
4 (acatulamino) hanzoio acid	_			showed no cytotoxicity against HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G	-
	maratamanaida	A sporgillus versionler	mud of the South China	no displayed any inhibitary	103
Asperversing D	meroterpenoids	Aspenginus versicolor	Sea	activity against the AChE	105
Asperversins B			Sta	activity against the ACHE	

Asperversins C					
Asperversins D					
Asperversins E					
Asperversins F					
Asperversins G				displayed moderate inhibitory	
				activity against the AChE with	
				an IC ₅₀ value of 13.6 μ M.	
asperdemin				NA	
Butyrolactone-I	Butyrolactone	Aspergillus terreus	coral Porites pukoensis in	could inhibit the	104
			Zhanjiang seawaters	phosphorylation of p65 and I_B.	
			of the South China Sea	Furthermore, molecular docking	
				study suggested that ZB5-1	
				bound at the active sites of NF-	
				_B to prevent its translocation to	
				the nucleus. Therefore, we	
				suggest ZB5-1 has a potential to	
				reduce the anti-inflammatory	
				response in LPS-induced BV-2	
4 (2 hydrowymbanawy)banzana 1 2 dial	dinhanyil athara	A approxibles floring OOSC 2	fresh brench of the	cells	105
4-(3-nydroxyphenoxy)benzene-1,2-diol	dipitentyl etters	Asperginus navus QQSO-5	mangrovo plant Vandalia	showed moderate minority $aff_{aff_{aff_{aff_{aff_{aff_{aff_{aff_$	105
			oboyata collected from	against α -glucosidase	
2.4-dihydroxybutyl 2-bydroxy-4-(3-bydroxy-5-			Huizhou in Guangdong	showed moderate inhibitory	
methylphenoxy)benzoate			Province. China	effects with $IC_{co} = 129.9 \text{ µM}$	
inethylphenoxy joenzoute			,	against α -glucosidase	
3-(3 5-Dihydroxy-4-(1-hydroxy-5-methylbeyyl)benzyl)-5-	nhenolic bisabolane			showed strong inhibitory effects	
methylbenzene-1,2-diol	sesquiterpenoids			with IC ₅₀ = 4.5 μ M aginst α -	
	· · · · · · · · · · · · · · · · · · ·			glucosidase	
(E) 2 ((Hadrows (mathedbart 2 or 2 of) 5				and showed over in hibitane	
(E)-2-(0-Hydroxy-o-methylnept-2-en-2-yi)-3-				offects against a shappidage	
(nydroxymetnyi)phenor				effects against a-glucosidase	
peniciaculin B				showed strong inhibitory effects	
penielacum D				with $IC_{50} = 3.1 \text{ µM}$ against α -	
				glucosidase	
5-(hydroxymethyl)-2-(5-isopropyl-2-methyltetrahydrofiiran-2-				not showed any inhibitory	
vl)phenol				effects against α -glucosidase	
diorcinol				showed weak inhibitory effects	
				with IC ₅₀ = 532.5 μ M against α -	
				glucosidase	
(E)-5-(hydroxymethyl)-2-(60-methylhept-20-en-20-yl)phenol				not showed any inhibitory	
sydonol				effects against α-glucosidase	

				The second se	
peniciaculin A	mixed diphenyl ethers and phenolic bisabolane sesquiterpenoids			showed strong inhibitory effects with $IC_{50} = 1.5 \ \mu M$ against α - glucosidase	
expansol D				showed strong inhibitory effects with $IC_{50} = 2.3 \ \mu M$ against α -glucosidase	
aspergixanthones I	prenylxanthone derivatives	Aspergillus sp. ZA-01	Marine derived	showed the strongest anti-Vibrio activity against V. parahemolyticus (MIC = 1.56 μ M), V. anguillarum (MIC = 1.56 μ M), and V. alginolyticus (MIC = 3.12 μ M)	106
aspergixanthones J				showed anti-Vibrio activities to	
aspergixanthones K				three pathogenic Vibrio spp.,	
aspergixanthone A				with MIC values between 1.56	
15-acetyl tajixanthone hydrate				and 25.0 µM	
tajixanthone hydrate					
16-chlorotajixanthone					
5-epi-asperdichrome	tetrahydroxanthone dimers	Aspergillus versicolor HDN1009	mangrove-derived	showed promising antibacterial activities against Vibrio parahemolyticus, B. subtilis, Mycobacterium phlei, and P.aeruginosa, with MIC values ranging from 100 μ M to 200 μ M;	107
versixanthones N				exhibited extensive	
versixanthones O				cytotoxicities against five cancer cell lines (HL-60, K562, H1975, MGC803, and HO-8910), with IC ₅₀ values ranging from 1.7 μ M to 16.1 μ M	
tricochalasin A	aspochalasins	Aspergillus sp. Z4	marine isopod Ligia	showed weak activity against the	108
aspochalasin A2			oceanica which was	prostate cancer PC3 cell line	
aspochalasins D			collected in seaside of Dinghai in Zhoushan, Zhejiang Province of	showed strong activity against the prostate cancer PC3 cell line with $IC50 = 11.14 \ \mu M$	
aspergilluchalasin			China	showed weak activity against the	
aspochalasins T				prostate cancer PC3 cell line	
aspewentins I	20-nor-isopimarane diterpenoid	Aspergillus wentii SD-310	the deep sea	exhibited inhibitory activities	109
aspewentins J	epimers		sediment-derived	against zoonotic pathogenic bacteria such as Edwardsiella tarda, Vibrio harveyi, and V. parahaemolyticus with MIC = 8 μg/mL	

aspewentins K					not exhibited inhibitory	
aspewentins L					activities against zoonotic pathogenic bacteria such as E. coli, Edwardsiella tarda, Vibrio harveyi, and V. parahaemolyticus and not showed potent activity against the plant pathogen Fusarium graminearum	
aspewentin M					showed potent activity against the plant pathogen Fusarium graminearum with MIC = 4 μ g/mL	
methyl-(2-chloro-l,6-dihydroxy-3-methylxanthone)-8- carboxylate	xanthones	Aspergillus iizukae KL33	coastal saline soil in Kenli, Shandong Province of China		exhibited anti-H1N1 activity with IC50 values of 133.4 μM showed a strong anti-HSV-1 activity with IC50 values of 55.5 μM	110
methyl-(4-chloro-l,6-dihydroxy-3-methylxanthone)-8- carboxylate					exhibited distinctly strong activity towards influenza virus (H1N1), herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) with IC ₅₀ values of 44.6, 21.4, and 76.7 μ M	
methyl-(4-chloro-6-hydroxy-1-methoxy-3-methylxanthone)-8- carboxylate					not exhibited anti-H1N1 activity. showed a moderate	
methyl-(6-hydroxy-1-methoxy-3-methylxanthone)-8-carboxylate					anti-HSV-1,-2 activity	
4-chloro-1,6-dihydroxy-3-methylxanthone-8-carboxylic acid						
2,4-dichloro-1,6-dihydroxy-3-methylxanthone-8-carboxylic acid						
methyl-(l,6-dihydroxy-3-methylxanthone)-8-carboxylate	Anthonomianos				exhibited anti-H1N1 activity with IC50 values of 140.4 μM showed a strong anti-HSV-1 activity with IC50 values of 75.7 μM possessed a strong anti-HSV-2 effect with IC50 values of 95.4 μM	
questin	Anthraquinones				NA	
penipurdin A						
questinol			11	-		111
cordyol C-3-O-a-D-ribofuranoside	dıphenyl ethers	Aspergillus sydowii FNA026	marine water collected in the sea of China		exhibit selective cytotoxicity against different cancer cell lines (4T1, U937, PC3, HL-60, HT- 29, A549, NCI-H460, and K562)	111

diorcinol-3-O-a-D-ribofuranoside				not exhibit selective cytotoxi	city
4-methoxycarbonyl				against different cancer cell l	ines
diorcinol-3-O-a-D-glucoside				(4T1, U937, PC3, HL-60, H	-
2-(ethoxycarbonyl)-40-carboxydiorcinal				29, A549, NCI-H460, and	
				K562)	
7-ethyldiorcinol				exhibit selective cytotoxicity	
				(4T1 LIQ27 DC2 LIL 60 LI	ines
				(411, 0957, PC5, HL-00, H)	-
				K 562)	
3-hydroxydiorcinol		Aspergillus sydowij FNA026		exhibit selective cytotoxicity	
5-nyuloxyulolemoi		Asperginus sydown i NA020		against different cancer cell l	ines
				(4T1, U937, PC3, HL-60, H	<u>-</u>
				29, A549, NCI-H460, and	
				K562)	
4-methoxycarbonyl diorcinol				not exhibit selective cytotoxi	city
				against different cancer cell l	ines
				(4T1, U937, PC3, HL-60, H	-
				29, A549, NCI-H460, and	
				K562)	
diorcinol				exhibit selective cytotoxicity	
glyceryl diorcinolic acid				against different cancer cell	ines
cordyol C				(411, 0937, PC3, HL-60, H)	-
aspergilol E				K 562)	
4-nydroxy-2-(3 -nydroxy-4-methoxycarbonyl-5 -				not exhibit selective cytotoxi	city
ritalia D				(AT1 1037 PC3 HI 60 H	ines
diaminala E				29 A 549 NCI-H460 and	
2.7 dihydrovy 1.0 dimethyldihonzofuren				K562)	
5,7-dillydroxy-1,9-dilletilyldroenzordran					
4-carboxydiorcinal					
aspermutarubrol					
candidusin A	prenylated p-terphenyls	Aspergillus sp. KMM 4676	unidentified colonial	protected Neuro2a cells again	112 III
4 [°] -dehydroxycandidusin A	F		ascidian (Shikotan	the damaging influence of 6-	
mactanamide	diketopiperazine alkaloids	Aspergillus flocculosus	Island, Pacific Ocean)	OHDA to varying degrees	
asperpene A	Miscellaneous	Aspergillus sp. SCS-KFD66	a bivalve mollusk.	not showed inhibitory activit	y 113
······································		-r - 0	Sanguinolaria chinensis.	against E. coli ATCC 25922.	,
			collected from Haikou	Not showed inhibitory activi	ies
			Bay, Hainan province, in	against α-glucosidase and	
			China	acetylcholinesterase	
				showed weak DPPH radical	
				scavenging activity, with IC	0
				values of 1.8, mM	

asperpene B			not showed inhibitory activity	
asperpene C			against E. coli ATCC 25922.	
			Not showed inhibitory activities	
			against α-glucosidase and	
			acetylcholinesterase	
			showed weak DPPH radical	
			scavenging activity, with IC50	
			values of 0.6 mM	
dedihydroversiol			not showed inhibitory activity	1
			against E. coli ATCC 25922.	
			Not showed inhibitory activities	
			against α -glucosidase and	
			acetylcholinesterase	
			showed weak DPPH radical	
			scavenging activity with IC50	
			values of 1.1 mM	
mothyl 6 avo 2.6 dihydro 211 nyron 4 aarhayydata			not showed inhibitory activity	
inethyl 6-0x0-5,6-ulliydi0-2H-pylan-4-carboxylate			against E coli ATCC 25022	
versioi			Not showed inhibitory activities	
			Not showed minibitory activities	
			against u-glucosidase and	
			acetytenotinesterase	
(E)-4-oxonon-2-enoic acid			snowed inhibitory activities	
			against B. subtilis ATCC 6633,	
			with MIC values of 4 µg/mL	
			showed inhibitory activity	
			against S. aureus ATCC 6538,	
			with MIC values of 16 µg/mL	
			not showed inhibitory activity	
			against E. coli ATCC 25922.	
			Not showed inhibitory activities	
			against α-glucosidase and	
			acetylcholinesterase	
ergosta-5,7,22-triene-3b-ol	sterols		showed inhibitory activities	
			against B. subtilis ATCC 6633,	
			with MIC values of 128 µg/mL	
			not showed inhibitory activity	
			against E. coli ATCC 25922.	
			Not showed inhibitory activities	
			against α-glucosidase and	
			acetylcholinesterase	
			showed weak DPPH radical	
			scavenging activity, with IC50	
			values 0.6 mM	
b-sitosterol	1		not showed inhibitory activity	1
(22E)-5α,8α-epidioxyergosta-6,22-dien-3b-ol	1		against E. coli ATCC 25922.	

15a-hydroxy-(22E,24R)-ergosta-3,5,8(14),22-tetraen-7-one			Not showed inhibitory activities against α-glucosidase and acetylcholinesterase	
			showed weak DPPH radical scavenging activity, with IC50 values of 1.2 mM	
volemolide	norsterol		showed inhibitory activities against B. subtilis ATCC 6633, with MIC values of 128 µg/mL	
			not showed inhibitory activity against E. coli ATCC 25922. Not showed inhibitory activities against α -glucosidase and acetylcholinesterase	
oxaline	alkaloid		showed inhibitory activities against B. subtilis ATCC 6633, with MIC values 128 µg/mL not showed inhibitory activity	
			against E. coli ATCC 25922. Not showed inhibitory activities against α -glucosidase and acetylcholinesterase	
fumitremorgin B	indolyl diketopiperazine alkaloids		showed inhibitory activity against S. aureus ATCC 6538, with MIC values of 128 µg/mL	
			not showed inhibitory activity against E. coli ATCC 25922. Not showed inhibitory activities against α -glucosidase and acetylcholinesterase	
helvolic acid	tetracyclic triterpenoids		showed inhibitory activity against S. aureus ATCC 6538, with MIC values of 2 µg/mL had inhibitory activity against L. monocytogenes ATCC 1911, with MIC value of 128 µg/mL	
			not showed inhibitory activity against E. coli ATCC 25922. Not showed inhibitory activities against α -glucosidase and acetylcholinesterase	
			showed weak DPPH radical scavenging activity, with IC ₅₀ values of 0.7 mM	

3-[6-(2-methylpropyl)-2-oxo-1H-pyrazin-3-yl] propanamide	pyrazine derivatives	Aspergillus versicolor OUCMDZ-2738	a piece of fresh tissue from the algae Enteromorpha	not active as antimicrobial neither as anti-α-glucosidase	114
(+)-brevianamide X	prenylated indole alkaloids		prolifera, collected from the Shilaoren beach, Qingdao, China		
(-)-brevianamide X					
(+)-brevianamide R					
(-)-brevianamide R					
(+)-brevianamide Q					
(-)-brevianamide Q					
brevianamide V					
brevianamide W					
brevianamide K					
diorcinol B	biphenyl derivatives				
diorcinol C	1 2				
diorcinol E				not active as antimicrobial displayed a-glucosidase inhibitory activity with IC50	
diorcinol J				exhibited better α -glucosidase inhibitory activity than the assay control acarbose with IC50 values of 117.3 and 255.3 μ M, respectively not active as antimicrobial	
diorcinol				showed selective antibacterial against P. aeruginosa with a minimum inhibitory concentration (MIC) of 17.4 µM displayed a-glucosidase inhibitory activity with IC50 values of 275.3 µM	
4-methoxycarbonyldiorcinol				showed selective antibacterial against P. aeruginosa with a minimum inhibitory concentration (MIC) of 13.9 μ M and and C. glabrata with MIC values of 27.8 μ M not active as anti- α -glucosidase	
Wentiquinone C	anthraquinone	Aspergillus wentii EN-48	marine brown alga	powerful antioxidant	115
(8-hydroxy-6-(hydroxymethyl)-3-methoxy-9-oxo-9H-xanthene- 1-carboxylic acid	xanthone			NA	

calyxanthone						
waspergillamide B	Nitro depsi-Tetrapeptide	Aspergillus ochraceus	marine sponge Agelas	2019		116
	Diketopiperazine		oroides, which was			
		-	collected at a depth of 10			
ochraspergillic acid A	penicillic acid derivatives		m in Si gaçık- İzmir,		not active as cytotoxic	
ochraspergillic acid B		-	Тигкеу			
violaceotide A	cyclopeptides					
penicillic acid	lactones					
dihydropenicillic acid						
dihydroaspyrone						
xanthomegnin	naphthoquinone derivatives					
viomellein					exhibited strong cytotoxicity against the A2780 human ovarian carcinoma cells with IC50 values of 5.0 μM showed significant cytotoxicity	
					against the mouse lymphoma cell line L5178Y with an IC50 value of 5.3 µM.	
					Inactive against the human Jurkat T and Ramos B cancer cell lines	
cycloanthranilylproline	amino acid derivatives				not active as cytotoxic	
circumdatin F	benzodiazepine alkaloids					
circumdatin G						
circumdatin E						
circumdatin H						
circumdatin B						
circumdatin L		_				
ochratoxin A	Phenyl alanine derivatives				weak as cytotoxic	
ochratoxin B					exhibited strong cytotoxicity against the A2780 human ovarian carcinoma cells with IC50 values of 3.0 µM	
stephacidin A	prenylated indole alkaloids				not active as cytotoxic	
(-)-7,8-epoxy-brevianamide Q	diketopiperazines	Aspergillus versicolor MF180151	a sediment sample collected from the Bohai		showed no activities against the pathogens	117
(+)-7,8-epoxy-brevianamide Q			Sea, China			
(-)-8-hydroxy-brevianamide R						
(+)-8-hydroxy-brevianamide R						
(-)-8-epihydroxy-brevianamide R						
(+)-8-epihydroxy-brevianamide R						
(-)-brevianamide R	prenylated indole alkaloids					

(+)-brevianamide R					
versicolorin B	Anthraquinone			howed moderate activities	
				against S. aureus and	
	-			methicillin-resistant S. aureus	
averufin				howed moderate activities	
				against S. aureus and	
		Ailler Consideration	dim t l - th -t	methicillin-resistant S. aureus	118
cephalimysin M	derivatives	Strain CUGRME170049	a sediment sample that	not active as antibacterial	110
	derivatives	Strain COOBMIN 170049	Bohai Sea China		
pseuroiin A			Bohar Boa, China		
FD-838	halvalia agid dariyatiyas			showed antihestorial	
6.0 propionyl-10-0-deacetylhelyolio acid	nervone acid derivatives			activities against both S aureus	
belvelie asid	-			and MRSA	
1.2. dihadrahalaalia asid					
1,2-dihydroneivolic acid	4 hardware a normania	A	Maning an an an II-lialana	not active as antibacterial	119
inpyrone A	4-nydroxy-a-pyrones	Asperginus niger	sp was collected at	antibacterial efficacy against	
			Lingshui Hainan	four pathogenic bacteria with	
	-		Province. China	MIC values of 32–64 µg/mL	
nipyrone B				(Staphylococcus aureus,	
				Escherichia coli, Bacillus	
				subtilis, methicillin-resistant	
				Staphylococcus aureus)	
nipyrone C				showed promising activity	
				against S. aureus and B. subtilis,	
				with minimum inhibitory	
				concentration (MIC) values of 8	
				respectively and displayed weak	
				antitubercular activities against	
				M. tuberculosis, with MIC value	
				of 64 µg/mL	
germicidin C	1			not active as antibacterial	1
14,15-dehydro-6-epi-ophiobolin K	sesterterpenes	Aspergillus flocculosus	the algae Padina sp.,	showed potent cytotoxicity with	120
	(Ophiobolin Derivatives)		collected at a depth of 10	GI50 values ranging from 0.14	
14,15-dehydroophiobolin K			m in Son Tra peninsular,	to 2.01 µM	
14,15-dehydro-6-epi-ophiobolin G			Da Nang, Vietnam	showed potent cytotoxicity with	
14,15-dehydro-ophiobolin G				GI50 values ranging from 0.14	
14,15-dehydro-(Z)-14-ophiobolin G				το 2.01 μΜ	
6-epi-ophiobolinC					
ophiobolin C					
6-epi-ophiobolin N					
ophiobolin N					
Ochrazepine A	Circumdatin-Aspyrone	Aspergillus ochraceus LCJ11-	the coral Dichotella	exhibited cytotoxic activity	121

	Conjugates	102	gemmacea (Valenciennes) collected in Lingao,	against 10 human cancer cell lines	
Ochrazepine B			Hainan province, China	selectively inhibited U251	
•			the coral Dichotella	(human glioblastoma cell line)	
Ochrazepine C				was active against A673 (human	
				rhabdomyoma cell line), U87	
				(human glioblastoma cell line),	
				and Hep3B (human liver cancer	
				cell line) with IC50 (half	
				concentration) values of 2.5	
				11.3 µM among 26 tested	
				human cancer cell lines	
Ochrazenine D				selectively inhibited U251	
· · · · · · · · · · · · · · · ·				(human glioblastoma cell line)	
2-hydroxycircumdatin C				not active as anticancer	
aspyrone					
Preussin	a Hydroxypyrrolidine Derivative	Aspergillus candidus	marine sponge Epipolasis	showed cytotoxic and	122
		KUFA 0062	sp. from the coral reef at	antiproliferative activities in	
			the Similan Island	breast cancer cell lines in 2D	
			National Park in Phang-	and 3D cultures	
			Thailand		
asperiene A	drimane sesquiterpene esters	Aspergillus flavus	marine sediment collected	displayed potent bioactivities	123
asperiene B			from the Bohai Sea in July	towards four cell lines with the	
asperiene C				8 3 µM	
asperiene D				ο.5 μινι.	124
aspergillusidone G	depsidone derivative	A. unguis DLEP2008001	seaweed collected in	showed moderate to strong	124
agonodepside A			Dalian, China	microbes	
nornidulin				exhibited potent larvicidality	
nidulin				against brine shrimp	
aspergillusidone F				showed moderate to strong	
				activity towards different	
				microbes	
				exhibited potent larvicidality	
				against brine shrimp	
unguinol				not active	
aspergillusidone C				snowed moderate to strong	
2-chlorounguinol				microbes	
aspergillusidone A				inhibited acetylcholinesterase	
				(AChE) with IC50 in 56.75 µM	

unguisin A	Cyclic peptide				not active	
diorcinol L	prenylated diphenyl ether	A. tennesseensis OUCMB I	fresh inner tissue of an	2018	exhibited antimicrobial activities	125
(R)-diorcinol B		140430	unidentified marine alga,		against some human- and plant-	
(S)-diorcinol B			which was collected at		pathogenic microbes with MIC	
9-acetyldiorcinol B			Qingdao, China		values ranging from 2 to 64	
diorcinol C					μg/mL	
diorcinol D						
diorcinol E						
diorcinol J						
dihydrobenzofuran derivative						
					displayed considerable inhibitory activity against the THP-1 cell line in vitro, with an IC50 value of 7.0 μg/mL	
fumigatoside E	alkaloids	Aspergillus fumigatus SCSIO 41012	deep-sea sediments, which were collected from the Indian Ocean at a depth of 3614 m		showed significant antifungal activity against Fusarium oxysporum f. sp. momordicae with MIC at 1.56 μg/mL	126
fumigatoside F					exhibited significant activity against A. baumanii ATCC 19606 with a MIC value of 6.25 µg/mL	
Fumiquinazoline C	indole alkaloids				not active	
fumiquinazoline G					exhibited significant higher activity against S. aureus (16,339 and 29,213) with MIC values of 1.56 and 0.78 μg/mL, respectively	
epi-aszonalenin A					not active	
7-diketo-cephalosporin P1	cephalosporins [strrols]					
helvolic acid	strrols					
22-Oacetylisocyclocitrinol A						
2-(4-hydroxybenzyl)-4-(3-acetyl)quinazolin-one	quinazolinone alkaloid	Aspergillus sydowii SW9	seawater sample collected	2019	exhibited selective inhibitory	127
	aromatic bisabolene-type		from Yangma Island,		activities against the human	
	sesquiterpenoid		Yantai, China		pathogenic bacteria E.coli, S.	
	chorismic acid analogue				aureus, S. epidermidis, and S.	
2-(4-hydroxybenzoyl)-4(3H)-quinazolinone	quinazolinone alkaloid				ranging from 2.0 to 16 μ g/mL	
chrysotriazole A	triazole derivative				not active	
cryptoechinuline B enantiomers	echinulin-related indolediketopiperazine alkaloids	Aspergillus niveoglaucus	a marine sediment sample (Nha Trang Bay, South China Sea, Vietnam)	2020	(1a) exhibited neuroprotective activity in 6-OHDA-, paraquat-, and rotenone-induced in vitro models of Parkinson's disease	128

cryptoechinuline D echinulin neoechinulin B neoechinulin C neoechinulin E neoechinulin					 (1b) protected the neuronal cells against paraquat-induced damage in a Parkinson's disease model not active exhibited cytoprotective activity in a rotenone-induced model protected the neuronal cells against paraquat-induced damage in a Parkinson's disease model NOT active showed activity in the 6-OHDA- induced model 	
Quellenin	diketopiperazine	Aspergillus sp. YK-76	Osedax sp. annelid,	2018	showed anti-S. parasitica	129
diorcinol	diphenyl ethers		commonly called bone-		activity	
violaceol-I			eating worm, collected at			
violaceol-II			the São Paulo Ridge in off Brazil			
insulicolide B	Nitrobenzoyl sesquiterpenoids	Aspergillus ochraceus	a marine alga Coelarthrum		NA	130
14-O-acetylinsulicolide A		Jcma1F17	sp. collected in the South China Sea		displayed activities with IC50 values of 0.89 to 8.2 μ M against renal cancer cell lines arrested the cell cycle at the G0/G1 phase at a concentration of 1 μ M and induced late apoptosis at a concentration of 2 μ M after a 72 h treatment of 786-O renal cancer cells	
insulicolide C					not active	
6β,9α-dihydroxy-14-pnitrobenzoylcinnamolide insulicolide A					displayed activities with IC50 values of 0.89 to 8.2 µM against renal cancer cell lines	
Insulicolide A	sesquiternenoid derivatives				not active	
2-(dimethoxymethy)-1-hydroxyanthracene-9 10-dione	anthraquinone	Aspergillus versicolor	deen sea sediment		exhibited strong inhibitory	131
2-(uniculoxymeulyi)-i-nyuloxyanunacene-9,10-ulone	anniaquinone	Asperginus versicoloi	ucep sea scument		activities against MRSA ATCC 43300 and MRSA CGMCC 1.12409 (with MIC values of 3.9 and 7.8 µg/mL respectively) and moderate activities against tested strains of Vibrio (with MIC values ranging from 15.6 to 62.5 µg/mL)	

2-methylanthracene-9,10-dione				NA	
2-methylanthracene-9,10-dione					
damnacanthal					
rubiadin					
xanthopurpurin					
rubianthraquinone					
6-hydroxyrubiadin					
emodin					
stearic acid	aliphatic acid				
(7R,10S)-7,10-epoxysydonic acid	phenolic bisabolane	Aspergillus sp. xy02	the leaves of a Thai	132	32
(7S,10S)-7,10-epoxysydonic acid	sesquiterpenoids		mangrove Xylocarpus	displayed moderate inhibitory	
(7R,11S)-7,12-epoxysydonic acid			moluccensis	activities against Staphylococcus	
				aureus ATCC 25923 with IC50	
				values ranging from 31.5 to 41.9	
				μΜ	
(2) (2) $(75,115)$ 7.12 analyzydania paid	-				
(2), (5), (75,115)-7,12-epoxysydomic acid	-			NA diantara di una dianata in hihita ma	
/-deoxy-/,14-didenydro-12-nydroxysydonic acid				alsplayed moderate inhibitory	
				aureus ATCC 25923 with IC50	
				values ranging from 31.5 to 41.9	
				uM	
(Z)-7-deoxy-7.8-didehydro-12-hydroxysydonic acid				NA	
(E)-7-deoxy-7.8-didehydro-12-hydroxysydonic acid				displayed moderate inhibitory	
				activities against Staphylococcus	
				aureus ATCC 25923 with IC50	
				values ranging from 31.5 to 41.9	
				μM	
(+)-1-hydroxyboivinianic acid				NA	
engyodontiumone I				displayed moderate inhibitory	
				activities against Staphylococcus	
				aureus ATCC 25923 with IC50	
				values ranging from 31.5 to 41.9	
(+)-sydonic acid	_			NA	
(+)-nydroxysydonic acid				alsplayed moderate inhibitory	
				activities against Staphylococcus	
				values ranging from 31.5 to 41.9	
				uM	
(-)-(7S)-10-hydroxysydonic acid				showed mild antioxidative	
				activity to scavenge DPPH	
				radical with an IC50 of 72.1 µM	

				activities against Staphylococcus aureus ATCC 25923 with IC50 values ranging from 31.5 to 41.9 µM	
cyperin-2-O-®-D-glucoside	diphenyl ether	Aspergillus sp. CZDF18	marine derived	NA	133
quercilolin					
1,2-dihydroxy-3-aminobenzene	Miscellaneous				
2-hydroxy-6-methylbenzoic acid					
(2S, 4S, 5R)-4,5-dihydroxy-2- methyl cyclo hexanone					
3-hydroxybenzyl alcohol					
5-hydroxymethyl-furan-2-carboxylic acid				exhibited moderate anticancer activity with 66.1% inhibition against PC-3 cell lines at the concentration of 10 μg/mL exhibited favourable BRD4 inhibitory activity with 78.5 % inhibition at the concentration of 10 μg/mL	
4-(hydroxymethyl) catechol	catechol			exhibited favourable BRD4 inhibitory activity with 76.4% inhibition at the concentration of 10 µg/mL	
benzylamine	Miscellaneous			NA	
BAGGE chlorohydrin					
11-hydroxysydonic acid	diphenyl derivatives				
phenylacetic acid	Miscellaneous				
2-methoxylcordyol C	diphenyl ethers				
3,7-dihydroxy-1,9-dimethyldibenzofuran	Miscellaneous				
ditryptophenaline	peptides				
diorcinol	diphenyl ethers				
violaceol I					
cordyol C					
orcinol					
trans-cyclo-(D-tryptophanyl-L-tyrosyl)	peptides				
(-)-sydowic acid	sesquiterpene derivatives				
Versixanthone G	dimeric xanthones	Aspergillus vericolor		showed Topo I inhibition properties	134
Versixanthone H				showed Topo I inhibition properties. was confirmed to inhibit Topo I-mediated DNA relaxation by targeting Topo I, thereby, arresting the cell cycle process and inducing necrosis in cancer cells	

· · · · ·						
Versixanthone I					NA	
Versixanthone J						
Versixanthone K					showed Topo I inhibition properties	
Versixanthone L					NA	
Versixanthone M						
(3S,3'S,5aR,5'aR,10bR,10'bR,11aS,11'aS)-3,3'-dibenzyl-	asymmetrical	Aspergillus sp. DX4H	marine shrimp which was			135
2,2',3,3',5a,5'a,6,6',11,11a,11',11'a-dodecahydro-[10b,10'b-	bispyrrolidinoindoline		collected in seaside of			
bipyrazino[1',2':1,5]pyrrolo[2,3-b]indole]-1,1',4,4'-tetraone	diketopiperazines		Dinghai in Zhoushan,			
(3R,3'S,5aR,5'aR,10bR,10'bR,11aS,11'aS)-3,3'-dibenzyl-			Zhejiang Province of			
2,2',3,3',5a,5'a,6,6',11,11a,11',11'a-dodecahydro-[10b,10'b-			China			
bipyrazino[1',2':1,5]pyrrolo[2,3-b]indole]-1,1',4,4'-tetraone						
(3R,3'S,5aR,5'aR,10bR,10'bR,11aS,11'aS)-3,3'-dibenzyl-						
2,2',3,3',5a,5'a,6,6',11,11a,11',11'a-dodecahydro-[10b,10'b-						
bipyrazino[1',2':1,5]pyrrolo[2,3-b]indole]-1,1',4,4'-tetraone						126
diorcinol K	diphenyl ether	Aspergillus sp. CUGB-F046	sediment sample collected		displayed significant	130
			from the Bonai Sea, China		Stanbylogogous aurous and	
					methicillinesistant S aureus	
					with MIC values of 3 125	
					ug/mL	
diorcinols D					displayed significant	
					antibacterial activities against	
					Staphylococcus aureus and	
					methicillinresistant S. aureus	
					with MIC values of 6.25 and	
					μg/mL	
diorcinols F					NA	
diorcinols I					displayed significant	
					antibacterial activities against	
					Staphylococcus aureus and	
					methicillinresistant S. aureus	
ophiobolins X	ophiobolins	Aspergillus ustus 094102	the rhizosphere soil of		NA	137
ophiobolins Y	1	1 8 11 11 12	Bruguiera gymnorrhiza			
·r			0 0.			
21-dehydroophiobolin U						
ophiobolin Z					showed cytotoxicities against	
21-epi-ophiobolin Z					the G3K, MCF-7, MD-MBA-	
ophiobolin K					231, MCF/Adr, A549, and HL-	
6-epi-ophiobolin K					60 human cancer cell lines with	
ophiobolin G					the IC50 values ranging from	
ani anhiahalin G					ΝΑ	
cpi-opinooonin G				1	11/1	

ophiobolin P				
6-epi-ophiobolin G]		showed cytotoxicities against	
21-epi-ophiobolin O			the G3K, MCF-7, MD-MBA-	
ophiobolin O			231, MCF/Adr, A549, and HL-	
deoxyophiobolin K			60 human cancer cell lines with	
ophiobolin Q			the IC50 values ranging from 0.6 to 9.5 μM.	
ophiobolin H			NA	
5,6-di-epi-ophiobolin H]			
ophiobolin U				

NA: None applicable.

- 1 Z. Liu, Z. Dong, P. Qiu, Q. Wang, J. Yan and Y. Lu, *Steroids*, 2018, 140, 32–38.
- 2 S. Zou, Z. Wang, J. Wang, G. Wei, W. Wang, Y. Zang, F. Zeng, K. Chen, J. Liu, J. Wang, Z. Luo, Y. Xue, H. Zhu, C. Yin, C. Chen and Y. Zhang, 2018, 124, 127–131.
- 3 H. Cui, Y. Liu, T. Li, Z. Zhang, M. Ding, Y. Long and Z. She, *Fitoterapia*, 2018, **124**, 177–181.
- 4 G. Liao, P. Wu, J. Xue, L. Liu, H. Li and X. Wei, *Fitoterapia*, 2018, **131**, 50–54.
- 5 X. Du, D. Liu, J. Huang, C. Zhang, P. Proksch and W. Lin, *Fitoterapia*, 2018, **130**, 190–197.
- 6 J. Lin, X. Jiang, X. Liu, C. He, Y. Di, S. Lu, H. Huang, B. Lin, D. Wang and B. Fan, *Fitoterapia*, 2019, 133, 1–4.
- 7 N. Liu, S. Peng, J. Yang, Z. Cong, X. Lin, S. Liao, B. Yanga, X. Zhoua, X. Zhoub, Y. Liua and J. Wanga, *Fitoterapia*, 2019, 135, 27–32.
- 8 X. Pang, X. Lin, X. Zhou, B. Yang, X. Tian and J. Wang, *Fitoterapia*, 2020, 140, 104406.
- 9 Y. Sun, J. Liu, L. Li, C. Gong, S. Wang, F. Yang, H. Hua and H. Lin, *Bioorganic Med. Chem. Lett.*, 2018, 28, 315–318.
- 10 A. Ls, L. Huang, L. Ding, X. Li, N. Wang, Y. Yan, M. Yang, W. Cui, C. B. Naman, K. Cheng, W. Zhang, B. Zhang, H. Jin, L. Dak, S. Yip, Y. Chin, K. Li, M. Biopharmaceutical, C. Food and P. Sciences, *Bioorg. Med. Chem. Lett.*, 2019, 29, 1593–1596.
- 11 J. Yin, C. Zhang, J. Huang, J. Zhang, D. Liu, J. Huang, P. Proksch and W. Lin, Tetrahedron Lett., 2018, 59, 3157–3160.
- 12 P. Xu, L. Ding, J. Wei, Q. Li, M. Gui, X. He, D. Su and S. He, *Aquaculture*, 2019, 734670.
- 13 M. Liu, W. Sun, J. Wang, Y. He, J. Zhang and F. Li, *Bioorg. Chem.*, 2018, **80**, 525–530.
- 14 A. K. Vala, B. Sachaniya, D. Dudhagara, H. Z. Panseriya, H. Gosai, R. Rawal and B. P. Dave, Int. J. Biol. Macromol., 2018, 108, 41–46.
- 15 Z. Wu, D. Li, F. Zeng, Q. Tong, Y. Zheng, J. Liu and Q. Zhou, *Phytochemistry*, 2018, **156**, 159–166.
- 16 W. Feng, C. Chen, S. Mo, C. Qi, J. Gong, X. Li, Q. Zhou, Y. Zhou, D. Li, Y. Lai, H. Zhu, J. Wang and Y. Zhang, *Phytochemistry*, 2019, 164, 184–191.

- 17 K. Sun, G. Zhu, J. Hao, Y. Wang and W. Zhu, *Tetrahedron*, 2018, 74, 83–87.
- 18 M. F. Abdelwahab, T. Kurtán, A. Mándi, W. E. G. Müller, M. A. Fouad, M. S. Kamel, Z. Liu, W. Ebrahim, G. Daletos and P. Proksch, Tetrahedron Lett., 2018, 59, 2647–2652.
- 19 M. A. Aparicio-cuevas, C. González, H. A. Raja, I. Rivero-cruz, S. J. Kurina, J. E. Burdette, N. H. Oberlies and M. Figueroa, Tetrahedron Lett., 2019, 60, 1649–1652.
- 20 F. Wang, Z. Hu, C. Li, X. Wu and S. Cao, *Tetrahedron Lett.*, 2019, **60**, 1724–1726.
- 21 A. N. Shehata, A. A. Abd, E. Aty, D. A. Darwish, W. A. Abdel and F. A. Mostafa, Int. J. Biol. Macromol., 2018, 107, 990–999.
- 22 K. Kim, H. Jin, J. Hak, J. Han, Y. Kim and H. Oh, Neurochem. Int., 2018, 113, 8–22.
- 23 Z. Yang, Y. Shi, Y. Zhang, Q. Cheng, X. Li and C. Zhao, J. Hazard. Mater., 2018, 359, 203–212.
- 24 C. Xing, J. Wu, J. Xia, S. Fan, X. Yang, B. Resources, S. B. Exploitation and U. Collaborative, *Biochem. Syst. Ecol.*, 2019, 83, 103–105.
- 25 C. Qi, W. Gao, D. Guan, J. Wang and M. Liu, *Bioorg. Med. Chem.*, 2018, 26, 5903–5910.
- 26 S. K. Shanuja, S. Iswarya and A. Gnanamani, J. Photochem. Photobiol. B Biol., 2018, 179, 139–148.
- 27 E. Aly, M. Rawway, U. M. Abdul-raouf, M. Ahmed and M. Saber, Egypt. J. Aquat. Res., 2018, 44, 227–232.
- 28 S. Lima, A. Mendes, G. Franco, A. Ferreira, D. Silva, I. Evódio and J. Aparecida, *Phytochem. Lett.*, 2018, 24, 39–45.
- 29 Y. Tian, S. Lin, K. Kumaravel, H. Zhou and S. Wang, *Phytochem. Lett.*, 2018, 27, 74–77.
- 30 S. Yang, X. Li, X. Li, H. Li, L. Meng and B. Wang, *Phytochem. Lett.*, 2018, **25**, 191–195.
- 31 A. M. Elissawy, S. S. Ebada, M. L. Ashour and M. El-neketi, *Phytochem. Lett.*, 2019, 29, 1–5.
- 32 H. Li, X. Li, X. Li, S. Yang and B. Wang, *Phytochem. Lett.*, 2019, **32**, 138–142.
- 33 M. Elsbaey, C. Tanaka and T. Miyamoto, *Phytochem. Lett.*, 2019, **32**, 70–76.
- 34 Q. Song, X. Li, X. Hu, X. Li, L. Chi, H. Li and B. Wang, *Phytochem. Lett.*, 2019, **34**, 30–34.
- 35 W. Chen, H. Liu, J. Long, H. Tao, X. Lin, S. Liao, B. Yang, X. Zhou, Y. Liu, J. Wang, C. A. S. Key, T. Marine, G. Key and M. Materia, *Phytochem. Lett.*, 2020, 35, 99–102.
- 36 W. U. Ze-hong, L. I. U. Dong, X. U. Ying, C. Jian-liang and L. I. N. Wen-han, Chin. J. Nat. Med., 2018, 16, 219–224.
- 37 L. U. O. Xiao-wei, L. I. N. Yun, L. U. Yong-jun, Z. Xue-feng and L. I. U. Yong-hong, *Chin. J. Nat. Med.*, 2019, 17, 149–154.
- 38 M. M. Lotfy, H. M. Hassan, M. H. Hetta, A. O. El-gendy and R. Mohammed, Beni-Suef Univ. J. Basic Appl. Sci., 2018, 7, 263–269.
- 39 D. Zhang, W. Yi, H. Ge, Z. Zhang and B. Wu, *Nat. Prod. Res.*, 2019, **0**, 1–6.

- 40 Q. Zeng, W. Zhong, Y. Chen, Y. Xiang, X. Chen, W. Zhang, S. Zhang and F. Wang, *Nat. Prod. Res.*, 2019, **0**, 1–8.
- 41 P. Zhang, S. Song, J. Lang, C. Jia, S. Yan, L. Liu, S. Chen and J. Li, J. Asian Nat. Prod. Res., 2019, 6020, 1–7.
- 42 Y. Zhang, X. Peng, L. Feng, H. Zhu and F. Cao, *Nat. Prod. Res.*, 2019, **0**, 1–7.
- 43 W. Li, D. Luo, J. Huang, L. Wang, F. Zhang, T. Xi, J. Liao and Y. Lu, *Nat. Prod. Res.*, 2018, 6419, 0.
- 44 Z. Yang, K. Kaliaperumal, J. Zhang, Y. Liang, C. Guo, J. Zhang, B. Yang and Y. Liu, Nat. Prod. Res., 2020, 0, 1–8.
- 45 X. Li, X. Li, X. Li, X. Yin and B. Wang, Nat. Prod. Res., 2019, 0, 1–7.
- 46 Z. Song, Y. Liu, J. Gao, J. Hu, H. He, S. Dai, L. Wang, H. Dai, L. Zhang and F. Song, *Nat. Prod. Res.*, 2019, **0**, 1–8.
- 47 L. Ding, P. Xu, T. Li, X. Liao, S. He and S. Xu, DOI:10.1080/14786419.2018.1480622.
- 48 J. Tan, X. Liu, Y. Yang, F. Li, C. Tan and Y. Li, *Nat. Prod. Res.*, 2019, **0**, 1–7.
- 49 C. An, F. Kong, Y. Li, Q. Ma and Q. Xie, J. Asian Nat. Prod. Res., 2020, 0, 1–6.
- 50 A. N. Yurchenko, O. F. Smetanina, E. V Ivanets, T. T. Hoai, N. Thi, D. Ngo, O. I. Zhuravleva, A. B. Rasin, A. Sergey, E. S. Menchinskaya, E. A. Pislyagin, G. Von, S. S. Afiyatullov, E. A. Yurchenko, A. N. Yurchenko, O. F. Smetanina, E. V Ivanets, T. Thi, E. S. Menchinskaya, E. A. Pislyagin, G. Von Amsberg and S. S. Afiyatullov, *Nat. Prod. Res.*, 2019, **0**, 1–6.
- 51 T. Cao, J. Ling, Y. Liu, X. Chen, X. Tian, D. Meng, J. Hu and N. Wang, *Biosci. Biotechnol. Biochem.*, 2018, 82, 1832–1839.
- 52 P. Corral, F. P. Esposito, P. Tedesco, A. Falco, E. Tortorella, L. Tartaglione, C. Festa, M. V. D. Auria, G. Gnavi, G. C. Varese and D. De Pascale, 2018, 502–511.
- 53 Y. Lin, C. Xie, C. Xing, B. Wang, X. Tian, M. Xia, L. Jia, Y. Pan and X. Yang, *Nat. Prod. Res.*, 2019, 0, 1–5.
- 54 J. X. Zhu, L. Ding and S. He, DOI:10.1080/14786419.2018.1465423.
- 55 M. Elsbaey, A. Sallam, M. El-metwally, M. Nagata and C. Tanaka, *Chem. Biodivers.*, 2019, 16, e1900237.
- 56 L. Guo, F. Zhang, X. Wang, H. Chen, Q. Wang, J. Guo, X. Cao and L. Wang, *3 Biotech*, 2019, **9**, 1–7.
- 57 Y. Ji, W. Chen, T. Shan, B. Sun, P. Yan and W. Jiang, 2020, 1–5.
- 58 T. Jomori, Y. Hara, M. Sasaoka, K. Harada, A. Setiawan and K. Hirata, J. Nat. Med., 2020, 74, 76–82.
- 59 T. Liang, Y. Fang, J. Zheng and C. Shao, *Chem. Nat. Compd.*, 2018, **54**, 474–476.
- 60 Y. Luo, H. Ma, X. Zhang, X. He, W. Wang, C. Gang, H. Wang and Y. Pei, 2018, 54, 881–882.
- 61 N. D. Luyen, L. M. Huong, T. Thi, H. Ha, L. H. Cuong, D. Thi and H. Yen, 2019, **57**, 654–660.

- 62 A. S. Antonov, E. V Leshchenko, O. I. Zhuravleva, A. Sergey, G. Von Amsberg, R. S. Popov, V. A. Denisenko, N. N. Kirichuk, S. S. Afiyatullov, G. Von Amsberg, R. S. Popov, V. A. Denisenko and N. N. Kirichuk, *Nat. Prod. Res.*, 2019, **0**, 1–4.
- 63 M. Xuan, L. Xiao, H. Zhong-hui and Q. Shu-hua, *Nat. Prod. Res.*, 2019, **0**, 1–9.
- 64 G. K. Oleinikova, O. I. Zhuravleva, D. V Berdyshev, I. Natalia, R. S. Popov, V. A. Denisenko, N. N. Kirichuk and S. S. Afiyatullov, Nat. Prod. Res., 2019, 0, 1–4.
- 65 A. Muhammad, L. Xiao, M. Xuan, D. Jun-de and Q. Shu-hua, Nat. Prod. Res., 2019, 0, 1–9.
- 66 Z. Song, J. Gao, J. Hu, H. He, P. Huang and L. Zhang, Nat. Prod. Res., 2019, 0, 1–6.
- 67 X. Peng, Y. Wang, T. Zhu and W. Zhu, Arch. Pharm. Res., 2018, 41, 184–191.
- 68 Z. Fei, K. Fan-dong, M. Qing-yun, X. Qing-yi, Z. Li-man, Z. You-xing and G. Lei, J. Asian Nat. Prod. Res., 2019, 0, 1–7.
- 69 D. Kim, T. M. Ha, J. H. Sohn and J. H. Yim, *Nat. Prod. Res.*, 2018, **0**, 1–8.
- 70 Y. Tian, S. Lin, H. Zhou, S. Lin and S. Wang, Nat. Prod. Res., 2018, 6419, 1–6.
- 71 G. Said, X. Mou, Y. Fang, G. Chen and C. Shao, 2018, 54, 463–465.
- 72 G. Said, X. Hou, X. Liu and R. Chao, *Chem. Nat. Compd.*, 2019, 55, 457–459.
- 73 W. Wang, M. Gao, Z. Luo, Y. Liao, B. Zhang, Z. Shao, F. Li and J. Chen, *Nat. Prod. Res.*, 2019, **33**, 3077–3082.
- 74 C. Wu, X. Cui, B. Xiong, M. Yang and Y. Zhang, Nat. Prod. Res., 2019, 33, 2262–2266.
- 75 A. Hamed, A. S. Abdel-razek, D. A. Omran, M. Mohammad, D. G. El-hosari, M. Frese and H. S. M. Soliman, Nat. Prod. Res., 2019, 0, 1–10.
- 76 D. R. Dudhagara and B. P. Dave, 2018, 1–11.
- 77 Y. Zhang, X. Hou, M. Yu and C. Wang, Chem. Nat. Compd., 2019, 55, 279–282.
- 78 G. Zhou, X. Chen, X. Zhang, Q. Che, G. Zhang, T. Zhu, Q. Gu and D. Li, J. Nat. Prod., 2020, 5–10.
- 79 H. Wen, X. Yang, Q. Liu, S. Li, Q. Li, Y. Zang, C. Chen, J. Wang, H. Zhu and Y. Zhang, J. Nat. Prod., 2020, 9–14.
- 80 Y. Tang, Y. Liu, Q. Ruan, M. Zhao, Z. Zhao and H. Cui, Org. Lett., 2019, 22, 1336–1339.
- 81 Y. N. Ha, S. Song, B. Orlikova-Boyer, C. Cerella, C. Christov, A. Kijjoa and M. Diederich, *Mar. Drugs*, DOI:10.3390/md18010057.
- 82 A. Zhu, M. Y. Yang, Y. H. Zhang, C. L. Shao, C. Y. Wang, L. D. Hu, F. Cao and H. J. Zhu, *Sci. Rep.*, 2018, 8, 1–10.
- 83 N. M. Abdel-Wahab, S. Scharf, F. C. Özkaya, T. Kurtán, A. Mándi, M. A. Fouad, M. S. Kamel, W. E. G. Müller, R. Kalscheuer, W. Lin, G. Daletos, W. Ebrahim, Z. Liu and P. Proksch, *Planta Med.*, 2019, **85**, 503–512.
- 84 S. S. Afiyatullov, O. I. Zhuravleva, A. S. Antonov, D. V. Berdyshev, M. V. Pivkin, V. A. Denisenko, R. S. Popov, A. V. Gerasimenko, G. von Amsberg, S. A. Dyshlovoy, E. V. Leshchenko and A. N. Yurchenko, *J. Antibiot. (Tokyo).*, 2018, **71**, 846–853.
- 85 K. H. Cho, J. H. Sohn and H. Oh, *Nat. Prod. Res.*, 2018, **32**, 214–221.
- 86 R. Zhou, X. Liao, H. Li, J. Li, P. Feng, B. X. Zhao and S. Xu, Front. Chem., 2018, 6, 1–7.
- 87 L. Huang, L. Ding, X. Li, N. Wang, W. Cui, X. Wang, C. B. Naman, J. E. H. Lazaro, X. Yan and S. He, Front. Microbiol., 2019, 10, 1–10.
- 88 B. Bin Gu, W. Wu, F. R. Jiao, W. H. Jiao, L. Li, F. Sun, S. P. Wang, F. Yang and H. W. Lin, *Org. Lett.*, 2018, **20**, 7957–7960.
- 89 B. Bin Gu, Y. H. Gui, L. Liu, Z. Y. Su, W. hua Jiao, L. Li, F. Sun, S. P. Wang, F. Yang and H. W. Lin, Magn. Reson. Chem., 2019, 57, 49–54.
- 90 B. Bin Gu, F. R. Jiao, W. Wu, W. H. Jiao, L. Li, F. Sun, S. P. Wang, F. Yang and H. W. Lin, J. Nat. Prod., 2018, 81, 2275–2281.
- 91 M. Hashimoto, H. Kato, A. Katsuki, S. Tsukamoto and I. Fujii, ChemBioChem, 2018, 19, 535–539.
- 92 C. Q. Liu, X. C. Wei, F. L. An and Y. H. Lu, J. Microbiol. Biotechnol., 2019, 29, 587–595.
- 93 F. Li, Z. Zhang, G. Zhang, Q. Che, T. Zhu, Q. Gu and D. Li, *Org. Lett.*, 2018, **20**, 1138–1141.
- 94 H. Li, W. Sun, M. Deng, Q. Zhou, J. Wang, J. Liu, C. Chen, C. Qi, Z. Luo, Y. Xue, H. Zhu and Y. Zhang, J. Org. Chem., 2018, 83, 8483–8492.
- 95 J. T. Liu, W. Wu, M. J. Cao, F. Yang and H. W. Lin, *Nat. Prod. Res.*, 2018, **32**, 1791–1797.
- 96 Z. Liu, H. Liu, Y. Chen and Z. She, *Nat. Prod. Res.*, 2018, **32**, 2652–2656.
- 97 M. Liu, W. Sun, J. Wang, Y. He, J. Zhang, F. Li, C. Qi, H. Zhu, Y. Xue, Z. Hu and Y. Zhang, *Bioorg. Chem.*, 2018, 80, 525–530.
- 98 P. E. Mandelare, D. A. Adpressa, E. N. Kaweesa, L. N. Zakharov and S. Loesgen, J. Nat. Prod., 2018, 81, 1014–1022.
- 99 H. J. Shin, B. K. Choi, P. T. H. Trinh, H. S. Lee, J. S. Kang, T. T. T. Van, H. S. Lee, J. S. Lee, Y. J. Lee and J. Lee, *Mar. Drugs*, DOI:10.3390/md16010014.
- 100 Z. K. Guo, Y. Q. Zhou, H. Han, W. Wang, L. Xiang, X. Z. Deng, H. M. Ge and R. H. Jiao, Mar. Drugs, 2018, 16, 3–9.
- 101 S. Q. Yang, X. M. Li, X. Li, L. P. Chi and B. G. Wang, *Mar. Drugs*, 2018, 16, 1–9.
- 102 S. Buttachon, A. A. Ramos, Â. Inácio, T. Dethoup, L. Gales, M. Lee, P. M. Costa, A. M. S. Silva, N. Sekeroglu, E. Rocha, M. M. M. Pinto, J. A. Pereira and A. Kijjoa, *Mar. Drugs*, 2018, 16, 1–22.
- H. Z. Huaqiang Li, Weiguang Sun, Mengyi Deng, Changxing Qi, Chunmei Chen and Y. X. * I. and Y. Z. Zengwei Luo, Jianping Wang *, Mar. Drugs, 2018, 16, 177.
- 104 Y. Y. Zhang, Y. Zhang, Y. B. Yao, X. L. Lei and Z. J. Qian, *Mar. Drugs*, DOI:10.3390/md16060202.
- 105 Y. Wu, Y. Chen, X. Huang, Y. Pan, Z. Liu, T. Yan, W. Cao and Z. She, *Mar. Drugs*, 2018, 16, 1–9.

- 106 A. Zhu, X. W. Zhang, M. Zhang, W. Li, Z. Y. Ma, H. J. Zhu and F. Cao, *Mar. Drugs*, 2018, 16, 1–8.
- 107 G. Yu, G. Wu, Z. Sun, X. Zhang, Q. Che, Q. Gu, T. Zhu, D. Li and G. Zhang, Mar. Drugs, DOI:10.3390/md16090335.
- 108 X. Li, W. Ding, P. Wang and J. Xu, Mar. Drugs, 2018, 16, 1–9.
- 109 X. D. Li, X. Li, X. M. Li, G. M. Xu, Y. Liu and B. G. Wang, Mar. Drugs, 2018, 16, 440.
- 110 H. H. Kang, H. Bin Zhang, M. J. Zhong, L. Y. Ma, D. S. Liu, W. Z. Liu and H. Ren, Mar. Drugs, 2018, 16, 1–9.
- 111 Y. N. Wang, Y. H. Mou, Y. Dong, Y. Wu, B. Y. Liu, J. Bai, D. J. Yan, L. Zhang, D. Q. Feng, Y. H. Pei and Y. C. Hu, Mar. Drugs, 2018, 16, 1–11.
- 112 E. A. Yurchenko, E. S. Menchinskaya, E. A. Pislyagin, P. T. H. Trinh, E. V. Ivanets, O. F. Smetanina and A. N. Yurchenko, Mar. Drugs, 2018, 16, 1–15.
- 113 C. L. An, F. D. Kong, Q. Y. Ma, Q. Y. Xie, J. Z. Yuan, L. M. Zhou, H. F. Dai, Z. F. Yu and Y. X. Zhao, Mar. Drugs, 2018, 16, 8–17.
- 114 W. Liu, L. Wang, B. Wang, Y. Xu, G. Zhu, M. Lan, W. Zhu and K. Sun, *Mar. Drugs*, 2019, **17**, 2–13.
- 115 X. Li, X. M. Li and B. G. Wang, Mar. Drugs, 2019, 17, 1-8.
- 116 M. Frank, F. Can Özkaya, W. E. G. Müller, A. Hamacher, M. U. Kassack, W. Lin, Z. Liu and P. Proksch, Mar. Drugs, 2019, 17, 1–13.
- 117 J. Hu, Z. Li, J. Gao, H. He, H. Dai, X. Xia, C. Liu, L. Zhang and F. Song, *Mar. Drugs*, 2019, 17, 1–9.
- 118 X. Xu, J. Han, Y. Wang, R. Lin, H. Yang, J. Li, S. Wei, S. W. Polyak and F. Song, *Mar. Drugs*, 2019, **17**, 289.
- 119 L. Ding, L. Ren, S. Li, J. Song, Z. Han, S. He and S. Xu, Mar. Drugs, DOI:10.3390/md17060344.
- 120 B. K. Choi, P. T. H. Trinh, H. S. Lee, B. W. Choi, J. S. Kang, N. T. D. Ngoe, T. T. T. Van and H. J. Shin, Mar. Drugs, DOI:10.3390/md17060346.
- 121 Y. Fan, Y. Zhou, Y. Du, Y. Wang, P. Fu and W. Zhu, Mar. Drugs, DOI:10.3390/md17070400.
- 122 F. Malhão, A. A. Ramos, S. Buttachon, T. Dethoup, A. Kijjoa and E. Rocha, Mar. Drugs, , DOI:10.3390/md17080448.
- 123 L. Y-F, Y.-F. Yue, L.-X. Feng, H.-J. Zhu and F. Cao, Mar. Drugs, 2019, 17, 550–560.
- 124 W. C. Yang, H. Y. Bao, Y. Y. Liu, Y. Y. Nie, J. M. Yang, P. Z. Hong and Y. Zhang, *Molecules*, 2018, 23, 2245.
- 125 Z. X. Li, X. F. Wang, G. W. Ren, X. L. Yuan, N. Deng, G. X. Ji, W. Li and P. Zhang, *Molecules*, DOI:10.3390/molecules23092368.
- 126 S. Limbadri, X. Luo, X. Lin, S. Liao, J. Wang, X. Zhou, B. Yang and Y. Liu, *Molecules*, 2018, 23, 1–9.
- 127 Y.-J. Liu, J.-L. Zhang, C. Li, X.-G. Mu, X.-L. Liu, Y.-C. Zhao, P. Zhang, X.-D. Li and X.-X. Zhang, Molecules, 2019, 24, 4596.
- 128 O. F. Smetanina, A. N. Yurchenko, E. V. G. Ivanets, P. Thi, H. Trinh, A. S. Antonov, S. A. Dyshlovoy, G. Von Amsberg, N. Y. Kim, E. A. Chingizova, E. A. Pislyagin, E. S. Menchinskaya,

E. A. Yurchenko, T. T. T. Van and S. S. Afiyatullo, Molecules, 2020, 25, 61.

- 129 K. Takahashi, K. Sakai, W. Fukasawa, Y. Nagano, S. O. Sakaguchi, A. O. Lima, V. H. Pellizari, M. Iwatsuki, K. Takishita, T. Yoshida, K. Nonaka, K. Fujikura and S. Ōmura, J. Antibiot. (Tokyo)., 2018, 71, 741–744.
- 130 Y. Tan, B. Yang, X. Lin, X. Luo, X. Pang, L. Tang, Y. Liu, X. Li and X. Zhou, J. Nat. Prod., 2018, 81, 92–97.
- 131 W. Wang, R. Chen, Z. Luo, W. Wang and J. Chen, *Nat. Prod. Res.*, 2018, **32**, 558–563.
- 132 P. Wang, J. H. Yu, K. Zhu, Y. Wang, Z. Q. Cheng, C. S. Jiang, J. G. Dai, J. Wu and H. Zhang, *Fitoterapia*, 2018, 127, 322–327.
- 133 X. Wu, Z. Chen, W. Ding, Y. Liu and Z. Ma, *Nat. Prod. Res.*, 2018, **32**, 1562–1566.
- 134 G. Wu, X. Qi, X. Mo, G. Yu, Q. Wang, T. Zhu, Q. Gu, M. Liu, J. Li and D. Li, *Eur. J. Med. Chem.*, 2018, 148, 268–278.
- 135 J. Xu, Q. Hu, W. Ding, P. Wang and Y. Di, Nat. Prod. Res., 2018, 32, 815–820.
- 136 X. Xu, H. Yang, H. Xu, L. Yin, Z. Chen and H. Shen, *Nat. Prod. Res.*, 2018, **32**, 821–825.
- 137 T. Zhu, Z. Lu, J. Fan, L. Wang, G. Zhu, Y. Wang, X. Li, K. Hong, P. Piyachaturawat, A. Chairoungdua and W. Zhu, J. Nat. Prod., 2018, 81, 2–9.