Electronic Supplementary Information

Preparation and dye adsorption property of an oxygen-rich porous organic

polymer

Guang Yang,^a Huimin Gao,^a and Qingyin Li^a and Shijie Ren*^a

^a College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China. E-mail address: rensj@scu.edu.cn

Contents

Fig. S1 NMR spectrum of 1,3,5-triethynylbenzene.

Scheme S1 Synthetic route of polymer POP-B.

Fig. S2 Fourier transform infrared (FT-IR) spectra.

Fig. S3 Solid-state ¹³C CP-MAS NMR spectrum of POP-O.

Fig. S4 Thermogravimetric analysis (TGA) analysis of POP-O.

Fig. S5 PXRD pattern of POP-O.

Fig. S6 Water contact angle tests of (a) POP-O and (b) POP-B.

Fig. S7 The particle size and distribution of polymers in water.

Table S1 The adsorption capacity of Rhodamine B by polymers POP-O and POP-B at different times.

 Table S2
 The adsorption capacity of Rhodamine B by polymer POP-O at different concentration.

Fig. S8. Langmuir (a) and Freundlich (b) isotherms of Rh B adsorption by polymer POP-O.

 Table S3. Fitting parameters of Langmuir model and Freundlich model adsorption isotherms of POP-O on Rh B.

Fig. S9 Cartoon schematic diagram of the adsorption process.

Fig. S10 Fitting curves of pseudo-first-order (a) and pseudo-second-order (b) kinetic equations.

 Table S4 Fitting parameters of pseudo-first-order and pseudo-second-order models of POP-O on Rh B.

Fig. S11 SEM images of POP-O before (a) and after (b) recycling.

Fig. S12 FT-IR spectra of POP-O before (red) and after (black) recycling.

Fig. S13 PXRD patterns of POP-O before (red) and after (black) recycling.

Scheme S1 Synthetic route of polymer POP-B.

Fig. S2 Fourier transform infrared (FT-IR) spectra of 1,3,5-triethynylbenzene, 2,5-dichloro-3,6-dihydroxy-*p*-benzoquinone and POP-O.

Fig. S3 Solid-state ¹³C CP-MAS NMR spectrum of POP-O (* The characteristic broad peaks at 15 to 40 ppm may be caused by the *solvent adsorbed* in the pores of the polymer).

Fig. S4 Thermogravimetric analysis (TGA) analysis of POP-O.

Fig. S6 Water contact angle tests of (a) POP-O and (b) POP-B.

Fig. S7 The particle size distribution of the polymers in water.

Table S1 The adsorption capacity of Rhodamine B by polymers POP-O and POP-B at different times

Time	Adsorption capacity	Adsorption capacity		
(min)	(mg g ⁻¹) POP-O	(mg g ⁻¹) POP-B		
0	0	0		
10	410	142		
20	496	176		
40	528	210		
60	524	243		
90	534	289		
120	547	298		
240	562	330		
480	576	370		
960	590	390		

Table S2 The adsorption capacity of Rhodamine B by polymer POP-O at different concentration

Initial concentration	Adsorption capacity		
(mg g ⁻¹)	(mg g ⁻¹) of POP-O		
214.48165	407.066		
276.66928	473.259		
328.74324	520.104		
481.23409	590.262		
498.65915	617.262		
546.04527	650.254		
663.06672	686.253		

Fig. S8 Langmuir (a) and Freundlich (b) isotherms of Rh B adsorption by polymer POP-O.

Table S3 Fitting parameters of Langmuir model and Freundlich model adsorption isotherms of POP-O on Rh B

Langmuir			Freundlich			
<i>q</i> _m (mg g⁻¹)	<i>K</i> _L (L g ⁻¹)	<i>R</i> ²	-	K _F mg g⁻¹	n	<i>R</i> ²
1012	0.9949	0.99272		35.826	2.187	0.98591

Fig. S9 Cartoon schematic diagram of the adsorption process.

Fig. S10 Fitting curves of pseudo-first-order (a) and pseudo-second-order (b) kinetic equations for the adsorption of Rh B by POP-O.

Table S4 Fitting parameters of pseudo-first-order and pseudo-second-order models of POP-O on Rh B

Polymer	Model	К	$q_{ m e cal.}$ (mg g ⁻¹)	R ²	<i>q</i> _{e exp.} (mg g ⁻¹)
POP-O	Pseudo-first-order	0.12946	551	0.98396	592
	Pseudo-second-order	0.00002168	591.7	0.99983	592

Fig. S11 SEM images of POP-O (a) before and (b) after recycling.

Fig. S12 FT-IR spectra of POP-O before (red) and after (black) recycling.

Fig. S13 PXRD patterns of POP-O before (red) and after (black) recycling.