Supporting Information for

A Comparison Study of Sodium ion and Potassium ion Modified

Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution

Siyu Hu, Anchi Yu* and Rong Lu*

Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China

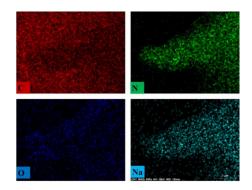


Fig. S1: Element mapping images of GCN-Na-5.

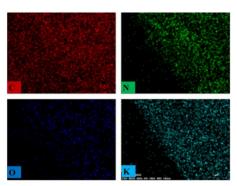


Fig. S2: Element mapping images of GCN-K-5.

Table S1: BET surface area, average pore diameter and pore volume for each sample.

Sample	$S_{BET}(m^2/g)$	Average pore diameter(nm)	Pore volume(cm ² /g)
GCN	10.40	20.78	0.054
GCN-Na-0.5	6.81	16.75	0.029
GCN-Na-5	10.30	13.74	0.035
GCN-K-0.5	6.30	14.03	0.023
GCN-K-5	7.02	11.63	0.020

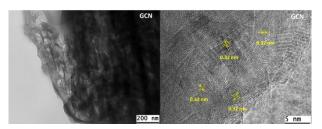


Fig. S3: TEM and high resolution TEM images of GCN.

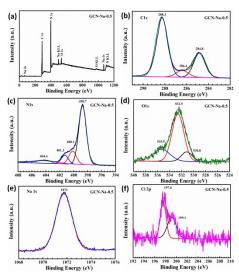


Fig. S4: XPS spectrum of GCN-Na-0.5 (a). High resolution XPS spectra of C1s (b), N 1s (c), O 1s (d), Na 1s (e) and Cl 1s (f) for GCN-Na-0.5.

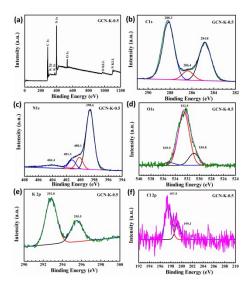


Fig. S5: XPS spectrum of GCN-K-0.5 (a). High resolution XPS spectra of C1s (b), N1s (c), O1s (d), K 2p (e) and Cl 1s (f) for GCN-K-0.5.

Sample	C/N(at.)	Na(at.%)	K(at.%)	O(at.%)
GCN	0.659			2.85
GCN-Na-0.5	0.670	2.46		3.97
GCN-Na-5	0.687	2.49		5.75
GCN-K-0.5	0.682		2.47	4.58
GCN-K-5	0.706		3.01	5.76

Table S2: Elemental composition according to EDS measurements.

Table S3: XPS elemental composition analysis.

Sample	C 1s (at.%)	N 1s (at.%)	O 1s (at.%)	K 2p (at.%)	Na 1s (at.%)	Cl 2p (at.%)
GCN	43.74	54.64	1.62			
GCN-Na-0.5	49.65	45.69	2.86		1.64	0.15
GCN-Na-5	45.09	51	1.73		2.08	0.1
GCN-K-0.5	51.57	41.07	4.77	2.35		0.1
GCN-K-5	46.07	48.11	2.85	2.91		0.06

Table S4: Elmental analysis data for each sample.

Sample	C (wt.%)	N (wt.%)	H (wt.%)	C/N (mol ratio)	Average(mol ratio)
GCN	34.45	60.92	1.85	0.653	0 (57 - 0 005
	34.45	60.86	1.81	0.660	0.657 ± 0.005
CCNLNI- 0.5	31.91	55.38	1.62	0.672	0 (72 0 001
GCN-Na-0.5	31.91	55.29	1.65	0.673	0.673 ± 0.001
GCN-Na-5	30.13	51.52	1.90	0.683	0.692 0.000
	30.13	51.53	1.92	0.683	0.683 ± 0.000
GCN-K-0.5	29.88	50.87	1.52	0.674	
	29.86	50.79	1.45	0.686	0.680 ± 0.008
GCN-K-5	28.70	48.18	1.66	0.695	
	28.74	48.25	1.51	0.695	0.695 ± 0.000

Table S5: ICP-AES data for each sample.

Sample	Numb	er of Exper	iments	Na(wt.%)	K(wt.%)	
Sampre	1	2	3	1 (a (<i>w</i> t. 70)		
GCN						
GCN-Na-0.5	4.48	4.54	3.62	4.21 ± 0.515		
GCN-Na-5	5.20	5.32	5.68	5.40 ± 0.250		
GCN-K-0.5	10.36	10.26	10.53		10.38 ± 0.137	
GCN-K-5	11.06	11.19	11.62		11.29 ± 0.293	

Sample	Bandgap(eV)	Average(eV)
GCN	2.80 2.81 2.80	2.80±0.007
GCN-Na-0.5	2.75 2.77 2.75	2.76±0.012
GCN-Na-5	2.79 2.82 2.80	2.80±0.016
GCN-K-0.5	2.76 2.75 2.75	2.75±0.07
GCN-K-5	2.78 2.77 2.78	2.78±0.07

Table S6: The derived band gap data for each sample.

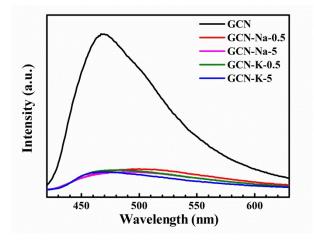


Fig. S6: Florescence spectra of GCN, GCN-Na-0.5, GCN-Na-5, GCN-K-0.5 and GCN-K-5. The excitation wavelength is 370 nm.

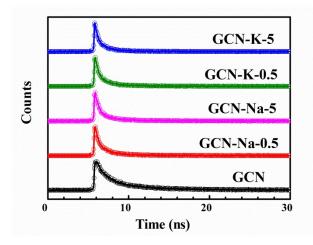


Fig. S7: Fluorescence decays of GCN, GCN-Na-0.5, GCN-Na-5 GCN-K-0.5 and GCN-K-5. Excitation wavelength, 375 nm; detection wavelength, 470 nm.

$\lambda_{ex}(nm)$	Sample	\mathbf{a}_1	$ au_1$ (ns)	a ₂	τ ₂ (ns)	<\alpha > (ns)
	GCN	0.4485	1.5375	0.5515	6.6826	4.375
	GCN-Na-0.5	0.5669	0.7653	0.4331	4.206	2.256
375	GCN-Na-5	0.5625	0.6929	0.4375	3.807	2.055
	GCN-K-0.5	0.5565	0.6628	0.4435	3.504	1.923
	GCN-K-5	0.5855	0.6345	0.4145	3.515	1.828

Table S7: The fitting parameters of fluorescence decay with bi-exponential function.

Table S8: Photocatalytic H₂ evolution rate for different samples.

Sample	H ₂ evolution $\lambda > 420 \text{ nm} (\mu \text{molh}^{-1})$	Average λ >420 nm(µmolh-1)
GCN	4.78 4.79 4.72	4.76 ± 0.038
GCN-Na-0.5	3.28 4.03 3.75	3.69 ± 0.379
GCN-Na-5	7.32 7.22 7.32	7.29 ± 0.058
GCN-K-0.5	10.6 9.75 10.3	10.2 ± 0.432
GCN-K-5	32.2 30.4 28.2	30.3±2.004