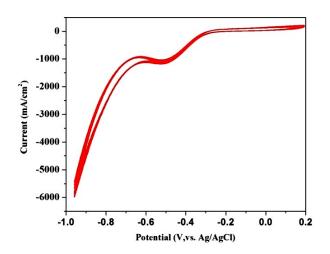
Supporting data

Novel MnO-CrN nanocomposite based non-enzymatic peroxide sensor


Ayesha Khan Tareen^{1,2}, Karim Khan^{2,3,*}, Waqas Ahmad ⁴, Muhammad Farooq Khan⁵, Qudrat Ullah Khan, and Xinke liu^{1,*}.

- 1. College of Materials Science and Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, P. R China.
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
- 3. School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan (DGUT), Dongguan, 523808, Guangdong Province, P. R. China.
- 4. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics,

Shenzhen University, Shenzhen 518060, P. R. China.

- 5. Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, 05006, South Korea.
- 6. College of physics and optoelectronics engineering, Shenzhen university.

*Corresponding author: Karim Khan: <u>karim_khan_niazi@yahoo.com</u>, and Xinke liu: xkliu@szu.edu.cn.

Fig.S1. The 20 CV cycles of modified MnO-CrN/GCE after four weeks in a solution of 5 mM H_2O_2 . Scan rate: 100 mV/s.