## SUPPORTING INFORMATION

## Copolymer chain formation of 2-oxazolines by in-situ <sup>1</sup>H-NMR spectroscopy:

dependence of sequential composition on substituent structure and monomer ratios

Sabina Abbrent\*,a, Andrii Mahuna,b, Miroslava Dušková Smrčkováa, Libor Koberaa,

Rafal Konefal<sup>a</sup>, Peter Černoch<sup>a</sup>, Karel Dušek<sup>a</sup>, Jiří Brus<sup>a</sup>

<sup>a</sup>Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic

<sup>b</sup>Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic

## Contents

- 1. Literature overview of previously studied cationic ring-opening polymerization (CROP) of 2-oxazoline based systems listing used monomers, solvents, initiators, polymerization temperatures and techniques (Table S1)
- 2. Pulse program used for kinetic measurements
- 3. Peak assignments for monomers
- 4. Denotations and definitions of variables (Table S2)
- 5. SEC analysis and chromatograms (Table S3 and Fig. S1)
- 6. Reproducibility of analysis from <sup>1</sup>H NMR data (Fig. S2 and Table S4)
- 7. Course of CROP homopolymerization. Monomer conversion in time (Fig. S3)
- Course of CROP copolymerization. Graphs displaying data points relevant to individual peaks evaluated from <sup>1</sup>H NMR experiments (Fig. S4)
- 9. Fineman-Ross copolymerization model
- 10. Half-times of copolymer reactions for individual monomers (Table S5)
- 11. Course of CROP copolymerization. Monomer relative molar concentrations  $x_1$  and  $x_2$  plotted as a function of reaction time and total monomer conversion  $\alpha$  (Fig. S5,6)
- 12. Course of CROP copolymerization. Graphs of parameters  $f_1, F_1, \Delta F_1$  showing individual points (Fig. S7-10)

## 1 Literature overview

 Table S1. Literature overview of previously studied systems listing used comonomers, solvents, initiators, polymerization temperatures and techniques

| Selected studies of polymentation and copolymentation of 2 onabolines                              |                                                                      |                     |                                                |                                                                                                                                                                                   |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Used (co)monomers                                                                                  | Solvent                                                              | Temperature<br>[°C] | Initiator                                      | Literature reference                                                                                                                                                              |  |  |
| 2-phenyl-2-oxazoline with 2-<br>methyl, 2-isopropenyl, and 2-<br>benzyl-2-oxazolines               | -                                                                    | 120                 | oxazolinium<br>perchlorate                     | T. KAGIYA, T. MATSUDA, <i>J.</i><br><i>Macromolec. Sci. Chem.</i> A6,<br>1631-1652 ( <b>1972</b> ). DOI<br>10.1080/00222337208061125                                              |  |  |
| block / 2-methyl-2-oxazoline<br>with 2-n-butyl, 2-n-octyl-, 2-n-<br>dodecyl-, 2-phenyl-2-oxazoline | acetonitrile                                                         | 80                  | methyl tosylate                                | KOBAYASHI, Shiro, IGARASHI,<br>Toshio, <i>Macromolecules</i> . <b>1986</b> .<br>Vol. 19, no. 3, p. 535–541.<br>DOI 10.1021/ma00157a006.                                           |  |  |
| 2-methyl-2-oxazoline, 2-<br>phenyl-2-oxazoline                                                     | acetonitrile or<br>nitrobenzene                                      | 80                  | acetyl chloride or<br>methacryloyl<br>chloride | DWORAK, Andrzej. <i>Polymer</i><br><i>Bulletin</i> . <b>1997</b> . Vol. 38, no. 1, p. 7–<br>13. DOI 10.1007/s002890050012.                                                        |  |  |
| 2-methyl-2-oxazoline, 2-<br>phenyl-2-oxazoline                                                     | benzene,<br>methylene<br>chloride,<br>nitromethane,<br>nitrobenzene, | 80                  | methyl iodide,<br>benzyl bromide               | DWORAK, Andrzej. <i>Macromol.</i><br><i>Chem. Phys.</i> <b>1998</b> . Vol. 199, p. 1843–<br>1849 DOI 10.1002/(SICI)1521-<br>3935(19980901)199:9<1843::AID-<br>MACP1843>3.0.CO;2-I |  |  |

## Selected studies of polymerization and copolymerization of 2-oxazolines

|                                                                                                                                                                           | acetonitrile                                                                                         |                                        |                                                                                                                                  |                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-(pent-4-ynyl)-2-oxazoline<br>with 2-methyl- or 2-ethyl-2-<br>oxazoline                                                                                                  | acetonitrile                                                                                         | 85                                     | methyl triflate                                                                                                                  | LUXENHOFER, Robert and<br>JORDAN, Rainer. <i>Macromolecules</i> ,<br><b>2006</b> . Vol. 39, no. 10, p. 3509–3516.<br>DOI 10.1021/ma052515m.                                      |
| random copolymers from 2-<br>methyl-2-oxazoline, 2-ethyl-2-<br>oxazoline, and 2-nonyl-2-<br>oxazoline                                                                     | N,N-dimethyl-<br>acetamide                                                                           | 100                                    | benzyl bromide                                                                                                                   | HOOGENBOOM, Richard, FIJTEN,<br>Martin W. M., WIJNANS, Sanne, et<br>al. <b>2006</b> . Vol. 8, no. 2, p. 145–148.<br>DOI 10.1021/cc050087q                                        |
| 2-methyl-, 2-ethyl, 2-nonyl-,<br>and 2-phenyl-2-oxazoline                                                                                                                 | acetonitrile                                                                                         | 140,<br>microwave                      | methyl tosylate                                                                                                                  | Wiesbrock, F., et al. (2005).<br><i>Macromolecules</i> , <i>38</i> (19), 7957–7966.<br>DOI 10.1021/ma050437x                                                                     |
| 2-methyl-2- oxazoline, 2-ethyl-<br>2-oxazoline, 2-phenyl- 2-<br>oxazoline, 2-nonyl-2-oxazoline                                                                            | acetonitrile                                                                                         | 120 or 140                             | methyl tosylate                                                                                                                  | HOOGENBOOM, Richard, et al.,<br><i>Polymer</i> . 2006. Vol. 47, no. 1, p. 75–<br>84.<br>DOI 10.1016/j.polymer. <b>2005</b> .11.025.                                              |
| statistical copolymers of 2-<br>nonyl-2-oxazoline with 2-<br>methyl-2- oxazoline or 2-ethyl-<br>2-oxazoline                                                               |                                                                                                      | 80-190,<br>microwave,<br>high pressure |                                                                                                                                  | HOOGENBOOM, Richard.<br>Macromolecular Chemistry and<br>Physics. 2007. Vol. 208, no. 1, p. 18–<br>25. DOI 10.1002/macp.200600558                                                 |
| 2-nonyl-2-oxazoline                                                                                                                                                       | Acetonitrile/dichl<br>ormethane                                                                      | 140,<br>microwave                      | methyl tosylate                                                                                                                  | HOOGENBOOM, Richard,<br>WIESBROCK, Frank, <i>Australian</i><br><i>Journal of Chemistry</i> <b>2007</b> . Vol. 60,<br>no. 9, p. 656. DOI 10.1071/CH07150.                         |
| 2-phenyl-2-oxazoline                                                                                                                                                      | Under pressure in<br>acetonitrile and<br>under reflux or at<br>the boiling point<br>of butyronitrile | microwave,<br>reflux<br>120, 125       | methyl tosylate                                                                                                                  | HOOGENBOOM, Richard, et al.,<br><i>Macromolecular Rapid</i><br><i>Communications</i> . <b>2005.</b> Vol. 26,<br>no. 22, p. 1773–1778.<br>DOI 10.1002/marc.200500370.             |
| 2-methyl-, 2-ethyl-, 2-nonyl-<br>and 2-phenyl-2-oxazoline, a 16-<br>membered set of 12 diblock<br>copoly(2-oxazoline)s and 4<br>chain-extended homopoly(2-<br>oxazoline)s | acetonitrile                                                                                         | 140,<br>microwave                      | methyl tosylate                                                                                                                  | HOEPPENER, Stephanie, et al.<br>Macromolecular Rapid<br>Communications. 2006. Vol. 27,<br>no. 6, p. 405–411.<br>DOI 10.1002/marc.200500863.                                      |
| 2-ethyl-2-oxazoline and 2-<br>phenyl-2-oxazoline                                                                                                                          | acetonitrile                                                                                         | 160,<br>microwave                      | benzylinitiating<br>group and different<br>leaving groups, Cl <sup>-</sup> ,<br>Br <sup>-</sup> , I <sup>-</sup> , and tosylates | Fijten, M. W. M., Hoogenboom, R.,<br>& Schubert, U. S. ( <b>2008</b> ). Journal of<br>Polymer Science Part A: Polymer<br>Chemistry, 46(14), 4804–4816. DOI<br>10.1002/pola.22814 |
| poly[(2-isopropyl-2-<br>oxazoline)50-block-(2-methyl-<br>2-oxazoline)50                                                                                                   | acetonitrile                                                                                         | 85                                     | methyl tosylate                                                                                                                  | LEGROS, Camille, et al., <i>Soft Matter</i><br><b>2015</b> . Vol. 11, no. 17, p. 3354–3359.<br>DOI 10.1039/c5sm00313j                                                            |
| well-defined gradient or random<br>copolymers 2-n-propyl-2-<br>oxazoline and either 2-<br>isopropyl-2-oxazoline or 2-<br>ethyl-2-oxazoline                                | acetonitrile                                                                                         | 42                                     | methyl tosylate                                                                                                                  | PARK, Joon-Sik Sik and<br>KATAOKA, Kazunori.<br><i>Macromolecules</i> <b>2007</b> . Vol. 40,<br>no. 10, p. 3599–3609.<br>DOI 10.1021/ma0701181                                   |
| poly[(2-isopropyl-2-oxazoline)-<br>co-(2-ethyl-2-oxazoline)                                                                                                               | acetonitrile                                                                                         | 42                                     | methyl tosylate                                                                                                                  | PARK, Joon Sik and KATAOKA,<br>Kazunori. <i>Macromolecules</i> . <b>2006</b> .<br>Vol. 39, no. 19, p. 6622–6630.<br>DOI 10.1021/ma0605548.                                       |
| 2-ethyl-2-oxazoline and 2-<br>nonyl-2-oxazoline                                                                                                                           | butyronitrile<br>acetonitrile                                                                        | reflux<br>microwave                    | methyl tosylate                                                                                                                  | FIJTEN, Martin et al.<br><i>Macromolecules</i> <b>2007</b> . Vol. 40,<br>no. 16, p. 5879–5886.<br>DOI 10.1021/ma070720r.                                                         |

| Selected studies using copolymerization with 2-dec-9'enyl-2-oxazoline                          |                        |                     |                                        |                                                                                                                                                                                                           |  |
|------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Used (co)monomers                                                                              | Solvent                | Temperature<br>[°C] | Initiator                              | Literature reference                                                                                                                                                                                      |  |
| 2-(dec-9-enyl)-2-<br>oxazoline with 2-hepthyl-2-<br>oxazoline                                  | o-dichlorobenzene      | 110                 | methyl 4-<br>nitrobenzene<br>sulfonate | Cai, G., & Litt, M. H. ( <b>1996</b> ). Journal<br>of Polymer Science Part A: Polymer<br>Chemistry, 34(13), 2679–2688. DOI<br>10.1002/(SICI)1099-<br>0518(19960930)34:13<2711::AID-<br>POLA15>3.0.CO;2-F  |  |
| 2-nonyl-2-oxazoline and 2-(9-<br>decenyl)-2-oxazoline                                          | acetonitrile           | 100                 | benzyl bromide                         | DEL RIO, Enrique, LLIGADAS,<br>Gerard, et al., <i>Journal of Polymer</i><br><i>Science Part A: Polymer Chemistry</i><br><b>2011</b> . Vol. 49, no. 14, p. 3069–3079.<br>DOI 10.1002/pola.24744.           |  |
| 2-(dec-9-enyl)-2-<br>oxazoline with either 2-methyl-<br>2-oxazoline or 2-ethyl-2-<br>oxazoline | nitromethane           | 140<br>microwave    | methyl tosylate                        | KEMPE, Kristian, VOLLRATH,<br>Antje, SCHAEFER, <i>Macromolecular</i><br><i>Rapid Communications</i> . <b>2010</b> .<br>Vol. 31, no. 21, p. 1869–1873.<br>DOI 10.1002/marc.201000283                       |  |
| 2-(dec-9-enyl)-2-<br>oxazoline with 2-ethyl-2-<br>oxazoline                                    |                        | 100<br>microwave    | methyl tosylate                        | KEMPE, Kristian, HOOGENBOOM,<br>Richard and SCHUBERT, Ulrich S.<br>A <i>Macromolecular Rapid</i><br><i>Communications</i> 15, <b>2011</b> Vol. 32,<br>no. 18, p. 1484–1489.<br>DOI 10.1002/marc.201100271 |  |
| EtOx and 2-(dec-9-enyl)-2-<br>oxazoline                                                        | acetonitrile           | 120<br>microwave    | methyl tosylate                        | KEMPE, Kristian et al.<br><i>Biomacromolecules</i> <b>2011</b> . Vol. 12,<br>no. 7, p. 2591–2600.<br>DOI 10.1021/bm2003847                                                                                |  |
| poly(2-(dec-9-enyl)-2oxazoline)<br>and poly(2- phenyl-2-<br>oxazoline)                         |                        | 100<br>microwave    | methyl tosylate                        | CHOJNACKA, Aleksandra, et al.,<br>Journal of Chromatography A 2012.<br>Vol. 1265, p. 123–132.<br>DOI 10.1016/j.chroma.2012.09.080                                                                         |  |
| 2-(dec-9-enyl)-2-<br>oxazoline with either 2-methyl-<br>2-oxazoline or 2-ethyl-2-<br>oxazoline | acetonitrile           | 140<br>microwave    | methyl tosylate                        | DARGAVILLE, Tim R., FORSTER,<br>Rebecca, et al., <i>Macromolecular</i><br><i>Rapid Communications</i> <b>2012</b> .<br>Vol. 33, no. 19, p. 1695–1700.<br>DOI 10.1002/marc.201200249                       |  |
| poly(2-nonyl-2-oxazoline)80-<br>stat-poly(2-dec-9-enyl-2-<br>oxazoline)20                      | dry<br>dichloromethane | 140                 | methyl tosylate                        | Fimberger, M.; Tsekmes, IA.;<br>Kochetov, R.; Smit, J.; Wiesbrock, F.<br>, <i>Polymers (Basel).</i> <b>2015</b> , <i>8</i> (1), 6.<br>DOI 10.3390/polym8010006                                            |  |
| 2-(butenenyl)-2-<br>oxazoline and 2-(dec-9-enyl)-2-<br>oxazoline with 2-methyl-2-<br>oxazoline | acetonitrile           | 140<br>microwave    | methyl tosylate                        | DARGAVILLE, Tim R., LAVA,<br>Kathleen, VERBRAEKEN, Bart and<br>HOOGENBOOM, Richard.<br><i>Macromolecules</i> . <b>2016</b> . Vol. 49,<br>no. 13, p. 4774–4783.<br>DOI 10.1021/acs.macromol.6b00167        |  |

## 2 Pulse program used for kinetic measurements



#### **3** Peak assignments for monomers

- **EthylOx:** (600MHz, DMF-ext), *δ* ppm: 4.11 (t, 9.5 Hz, 2H, OCH<sub>2</sub>), 3.69 (t, 9.3 Hz, 2H, NCH<sub>2</sub>), 2.18 (q, 7.4 Hz, 2H, CCH<sub>2</sub>), 1.12 (t, 7.8 Hz, 3H, CH<sub>3</sub>).
- **IsopropyIOx:** (600MHz, DMF-ext), *δ* ppm: 4.07 (t, 9.3 Hz, 2H, OCH<sub>2</sub>), 3.65 (t, 9.6 Hz, 2H, NCH<sub>2</sub>), 2.45 (septet, 7.0 Hz, 1H, CCH), 1.10 (d, 6.9 Hz, 6H, CH<sub>3</sub>).
- **ButylOx:** (600MHz, DMF-ext), *δ* ppm: 4.05 (t, 9.5 Hz, 2H, OCH<sub>2</sub>), 3.64 (t, 9.5 Hz, 2H, NCH<sub>2</sub>), 2.14 (t, 7.3 Hz, 2H, CCH<sub>2</sub>), 1.53 (quintet, 7.4 Hz, 2H, CCH<sub>2</sub>CH<sub>2</sub>), 1.33 (sextet, 7.4 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 0.85 (t, 7.3 Hz, 3H, CH<sub>3</sub>).
- **HeptylOx:** (600MHz, DMF-ext), *δ* ppm: 4.04 (t, 9.3 Hz, 2H, OCH<sub>2</sub>), 3.63 (t, 9.3 Hz, 2H, NCH<sub>2</sub>), 2.12 (t, 7.4 Hz, 2H, CCH<sub>2</sub>), 1.54 (quintet, 7.4 Hz, 2H, CCH<sub>2</sub>CH<sub>2</sub>), 1.26 (m, 7.1 Hz, 8H, CH<sub>2</sub>CH<sub>2</sub>), 0.83 (t, 6.0 Hz, 3H, CH<sub>3</sub>).
- **NonylOx:** (600MHz, DMF-ext), *δ* ppm: 4.00 (t, 9.2 Hz, 2H, OCH<sub>2</sub>), 3.60 (t, 9.2 Hz, 2H, NCH<sub>2</sub>), 2.09 (t, 7.4 Hz, 2H, CCH<sub>2</sub>), 1.51 (quintet, 7.4 Hz, 2H, CCH<sub>2</sub>CH<sub>2</sub>), 1.21 (bp, 7.4 Hz, 12H, CH<sub>2</sub>CH<sub>2</sub>), 0.80 (t, 6.6 Hz, 3H, CH<sub>3</sub>).
- DecenylOx: (600MHz, DMF-ext), δ ppm: 5.63 (m, 6.0 Hz, 1H, CH=CH<sub>2</sub>), 4.79 (d, 16.04 Hz, 1H, CH=CH<sub>2</sub>), 4.73 (d, 9.62 Hz, 1H, CH=CH<sub>2</sub>), 3.92 (t, 9.4 Hz, 2H, OCH<sub>2</sub>), 2.00 (t, 7.0 Hz, 2H, CCH<sub>2</sub>), 1.88 (q, 5.2 Hz, 2H, CH<sub>2</sub>CH=CH<sub>2</sub>), 1.46 (quintet, 7.4 Hz, 2H, CCH<sub>2</sub>CH<sub>2</sub>) overlapped by solvent, 1.16 (bp, 10H, CH<sub>2</sub>CH<sub>2</sub>).
- PhenylOx: (600MHz, DMF-ext), δ ppm: 7.54 (d, 7.5 Hz, 2H, Ar), 6.99 (t, 7.2 Hz, 1H, Ar), 6.94 (t, 7.2 Hz, 2H, Ar), 3.85 (t, 9.5 Hz, 2H, OCH<sub>2</sub>), 3.50 (t, 9.5 Hz, 2H, NCH<sub>2</sub>).

The spectra were obtained at 100 °C, with butyronitrile used as solvent.

| Denotation                  | Definition/Units                          | Obtained from / Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{M}_n$            | Number average molecular weight /         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                          | [g/mol]                                   | From GPC and from NMR spectra using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                                           | $\bar{M}_n = \bar{X}_{n(f)} [(f_{1(0)} M_{w1}) + (f_{2(0)} M_{w2})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\overline{M}_{w}$          | Weight average molecular weight /[g/mol]  | From GPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ${ar M}_{id}$               | Average ideal molecular weight from       | From NMR, using determined ratios in initial mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | starting composition / [g/mol]            | $\bar{M}_{id} = \bar{X}_{n(i)} [(f_{1(0)}M_{w1}) + (f_{2(0)}M_{w2})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\bar{X}_{n(i)}$            | Average degree of polymerization from     | From NMR spectra - the ratio of initiator peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | starting composition                      | (unchanged in time) to monomer peak at $t_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{X}_{n(f)}$       | Real average degree of polymerization     | From NMR spectra - the ratio of initiator peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             |                                           | (unchanged in time) to polymer peak at $\alpha = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( <i>c</i> ) <sub>0</sub>   | Relative molar monomer concentration at   | From NMR spectra, relative integral of peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                           | time 0                                    | representing both monomer species at time $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| с                           | Relative molar monomer concentration      | From NMR spectra, relative integral of peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             |                                           | representing both monomer species at time t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P                           | Relative peak area corresponding to       | From NMR spectra, obtained from integral values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             | polymerized units                         | polymer peak at $\alpha = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $P_{\alpha=1}$              | Relative peak area corresponding to       | From NMR spectra, obtained from integral value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | polymerized units at $\alpha = 1$         | polymer peak at $\alpha = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| p                           | Molar fraction of both polymerized        | p = P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | monomer units                             | $P = \frac{P}{P_{\alpha} = 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $f_{1}, f_{2}$              | Molar fractions of each monomer with      | From deconvolution of the monomer peaks at time t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | respect to monomer mixture                | $c_1 = c_1 c_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                                           | $f_1 = \frac{1}{c}; f_2 = \frac{1}{c}, f_1 + f_2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| x                           | Monomer molar fraction in the reacting    | $r = \frac{c}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | monomer mixture at time t with respect to | $(c)_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | the initial amount of both monomers       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_1, x_2$                  | Molar fractions of each monomer in the    | $x_1 = x f_1, x_2 = x f_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | whole mixture, incl. polymer              | $x_1 + x_2 + p - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| α                           | Molar conversion of both monomer units    | $\alpha = 1 - \frac{c}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | (total conversion)                        | ( <i>c</i> ) <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\alpha_1$ , $\alpha_2$     | Relative molar conversions of monomer 1   | $\alpha_1 = \frac{c_1}{c_1}, \ \alpha_2 = \frac{c_2}{c_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | and 2                                     | $(c_1)_0 (c_2)_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FriEs                       | Composition of polymer                    | $(c_{\ell})_{c} = c_{\ell}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17-2                        |                                           | $F_1 = \frac{(r_1, r_0, r_1)}{(r_1, r_1, r_1, r_2, r_1) + (r_1, r_2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                                           | $((c_1)_0 - c_1) + ((c_2)_0 - c_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                           | $F_1 + F_2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta F_1$ , $\Delta F_2$ | Composition of instantaneously formed     | $(c_1)_{t+\Lambda t} - (c_1)_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | polymer                                   | $\Delta F_1 = \frac{(1)}{(1)} + \frac{(1)}$ |
|                             |                                           | $((c_1)_{t+\Delta t} - (c_1)_t) + ((c_2)_{t+\Delta t} - (c_2)_t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                           | $\Delta F_1 + \Delta F_2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## 4 Table S2 Denotations and definitions of variables

## 5 SEC results from samples polymerized *in-situ* and in microwave

Table S3 Influence of manner of polymerization on product molecular weight and D

**Polymerization conditions:** Temperature 100 °C, Solvent Butyronitrile, Initiator Methyl tosylate

| Intended Ratio | $\overline{M}_w/\overline{M}_n(10^3)$ / <b><math>\boldsymbol{B}</math></b> |                          |  |  |  |
|----------------|----------------------------------------------------------------------------|--------------------------|--|--|--|
| NonOx : DecOx  | NMR polymerization                                                         | Microwave polymerization |  |  |  |
| 100:0          | 17.8/15.4/1.16                                                             | 20.3/17.2/1.18           |  |  |  |
| 90:10          | 19.9/18.3 /1.09                                                            | 27.6/22.0/1.11           |  |  |  |
| 80:20          | 18.8/17.4 /1.08                                                            | 23.7/21.1/1.13           |  |  |  |
| 60:40          | 18.8/17.4 /1.08                                                            | 23.8/21.6/1.10           |  |  |  |
| 0:100          | 14.9/13.0 /1.14                                                            | 14.5/13.5/1.07           |  |  |  |



Figure S1 Comparison of chromatograms obtained from samples polymerized in NMR tubes and in microwave

## 6 Reproducibility of analysis from <sup>1</sup>H NMR data

Monomer molar fractions in feed evaluated from 1H NMR experiment as a function of total conversion



- Figure S2 Two copolymerization runs (out of five) of NonOx/DecOx mixtures for ratios 80:20 and 60:40 with the largest differences (in NMR tube, temperature 100 °C, solvent Butyronitrile, initiator Methyl tosylate, reaction time 200-220 min)
- Table S4 Example of experimental variation of molecular weight averages derived from NMRbased experiment with NonOx:DecOx mixture at ratio 80:20

| Run | Mn    | Mw    | PDI   |
|-----|-------|-------|-------|
| 1   | 13000 | 14600 | 1.124 |
| 2   | 16300 | 17900 | 1.099 |
| 3   | 17400 | 18800 | 1.081 |
| 4   | 16100 | 18300 | 1.138 |
| 5   | 17200 | 18600 | 1.084 |

7 Course of CROP homopolymerization. Monomer conversion in time



Figure S3 Monomer conversion in time in homopolymerization as obtained from integration of the increasing <sup>1</sup>H NMR spectral peak corresponding to the open-ring species (at temperature 100 °C, solvent Butyronitrile, initiator Methyl tosylate)



## 8 Course of CROP copolymerization. Graphs displaying data points relevant to individual peaks evaluated from <sup>1</sup>H NMR experiments



to one individual NMR measurement (at temperature 100 °C, solvent Butyronitrile, initiator Methyl tosylate)

#### 9 Fineman-Ross copolymerization model

Copolymerization parameters  $r_1$  and  $r_2$  are according to this model calculated according to [1], calculated by

$$G = (r_1 \times F) - r_2$$

where

$$G = X(Y - 1)/Y$$
 and  $F = X^2/Y$ 

It also applies that 
$$X = \{M_1\}/\{M_2\}$$
 and  $Y = dM_1/dM_2$ 

According to our definitions in the main text it applies that  $M_1 = f_1$  and  $M_2 = f_2$ , while  $dM_1 = F_1$  and  $dM_2 = F_2$ . From obtained plots of parameters F and f versus conversion  $\alpha$  for both monomers values at 20 % conversion were used for calculations of G and F values for each of the comonomer mixture for each copolymer systems.

Resulting graphs are given below. Same procedure was conducted with 10% conversion, with same results. The graphs clearly show that the model cannot be applied for these systems.



Graphs showing data obtained from of Fineman-Ross copolymerization model applied for the six systems for values F and G defined above at 20 % monomer conversion.

[1] G. Odian, Principles of Polymerization, 4th edition, Wiley-Interscience, 2004.

### 10 Half-times of copolymer reactions for individual monomers

|             | t <sub>1/2</sub> , | 90:10                    |                             | 80:20                    |                             | 60:40                    |                             |
|-------------|--------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|
| R-          | [min]<br>100%      | t <sub>1/2</sub><br>(R-) | t <sub>1/2</sub><br>(DecOx) | t <sub>1/2</sub><br>(R-) | t <sub>1/2</sub><br>(DecOx) | t <sub>1/2</sub><br>(R-) | t <sub>1/2</sub><br>(DecOx) |
| EthylOx     | 34                 | 27                       | 132                         | 31                       | 34                          | 37                       | 41                          |
| IsoPropylOx | 65                 | 50                       | 26                          | 58                       | 45                          | 36                       | 38                          |
| ButylOx     | 35                 | 26                       | 103                         | 29                       | 56                          | 27                       | 67                          |
| HeptylOx    | 43                 | 31                       | 55                          | 64                       | 28                          | 81                       | 20                          |
| NonylOx     | 38                 | 47                       | 68                          | 43                       | 83                          | 40                       | 89                          |
| PhenylOx    | 79                 | 214                      | 23                          | 223                      | 21                          | 274                      | 22                          |
| DecenylOx   | 78                 | -                        | -                           | -                        | -                           | -                        | -                           |

**Table S5**. Half-times of reactions  $t_{1/2}$  (min) for homopolymers (first column) and copolymers showing monomer pairs separately

11 Course of CROP copolymerization. Monomer relative molar concentrations  $x_1$  and  $x_2$  plotted as a function of reaction time and total monomer conversion  $\alpha$ 





Figure S5 Decreasing monomer molar fractions in feed for individual 2-oxazoline monomer  $x_1$  and DecOx,  $x_2$ , as a function of reaction time for each ROx/DecOx system.





Figure S6 Molar fractions of ROx and DecOx monomers as a function of total monomer conversion  $\alpha$ 

# 12 Course of CROP copolymerization. Graphs of parameters $f_1, F_1, \Delta F_1$ showing individual points

The graphs in Figures S7-10 characterize the copolymer structure as it develops in time by considering the changes in composition of monomer mixture  $(f_1)$ , integral  $(F_1)$  and differential  $(\Delta F_1)$  compositions of the copolymer and the conversions of the comonomers  $(\alpha_1, \alpha_2)$ .



Figure S7 Detailed graphs depicting changes in composition of monomer mixture  $(f_1)$  as a function of monomer conversion  $\alpha$ , each point represents one measured <sup>1</sup>H NMR spectrum.



Figure S8 Detailed graphs depicting composition of polymer ( $F_1$ ) as a function of monomer conversion  $\alpha$ , each point represents one measured <sup>1</sup>H NMR spectrum.



Figure S9 Detailed graphs depicting instantaneous changes in composition of polymer ( $\Delta F_1$ ) as a function of monomer conversion  $\alpha$ , each point represents one measured <sup>1</sup>H NMR spectrum.



**Figure S10** Detailed graphs depicting the relative molar conversions of monomer 1 and  $2^{(\alpha_1, \alpha_2)}$  as a function of monomer conversion  $\alpha$ , each point represents one measured <sup>1</sup>H NMR spectrum.