Electronic Supplementary information

Versatile small molecule kinase assay through real-time, ratiometric fluorescence changes based on a pyrene-DPA-Zn²⁺ complex

Jihoon Kim,‡ Jinyoung Oh‡ and Min Su Han*

Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,

Republic of Korea

* Corresponding author. E-mail: happyhan@gist.ac.kr

Fluorescence spectra of pyrene-DPA-Zn²⁺ complex with ATP and ADP each

Fig. S1 Fluorescence spectra of pyrene-DPA-Zn²⁺ complex with various equivalents of (a) ATP and (b) ADP in buffer solution (HEPES, 20 mM, pH 7.4). [pyrene-DPA-Zn²⁺ complex] = 20 μ M, [ATP] or [ADP] = 0, 2, 4, 6, 8, 10 μ M, λ ex = 341 nm.

Fluorescence spectra change of pyrene-DPA-Zn²⁺ complex by hexokinase

Fig. S2 Fluorescence spectra of pyrene-DPA-Zn²⁺ complex with various units of hexokinase in buffer solution (HEPES, 20 mM, pH 7.4) containing ATP, Mg²⁺, and glucose. [pyrene-DPA-Zn²⁺ complex] = 20 μ M, [ATP] = 10 μ M, [Mg²⁺] = 80 μ M, [glucose] = 1 mM, [hexokinase] = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 units, λ ex = 341 nm.

Enzymatic parameters of hexokinase

Fig. S3 Lineweaver–Burk plots for activity of hexokinase *versus* concentration of glucose obtained from ratiometric fluorescence changes by pyrene-DPA-Zn²⁺ probe.

 Table S1 Enzymatic parameters obtained from our method and conventional method.

Method	Substrate	K _m (mM)	V _{max} (μmol min⁻¹ mg⁻¹)
This study	Glucose	0.367	0.665
Reported ^{S1}	Glucose	0.12	0.730

Fluorescence spectra change of pyrene-DPA-Zn²⁺ complex by creatine kinase

Fig. S4 Fluorescence spectra of pyrene-DPA-Zn²⁺ complex with various units of creatine kinase in buffer solution (HEPES, 20 mM, pH 7.4) containing ADP, Mg²⁺ and phosphocreatine. [pyrene-DPA-Zn²⁺ complex] = 20 μ M, [ADP] = 10 μ M, [Mg²⁺] = 80 μ M, [phosphocreatine] = 0.75 mM, [creatine kinase] = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 units, λ ex = 341 nm.

Estimated Inhibition constant for hexokinase and creatine kinase by the developed system

Table S2 Inhibition constant of N-benzoyl-D-glucosamine (NBG) for HK and iodoacetamide (IAA) for CK.

Inhibitor	IC ₅₀ (mM)	IC_{50} (mM) from ref ^{s2}
NBG	1.59	7.00
IAA	0.04	0.03

Reference

- [S1] (a) N. J. Berthels, R. R. C. Otero, F. F. Bauer, I. S. Pretorius, and J. M. Thevelein, Appl Microbiol
- [51] (a) N. S. Bertheld, N. R. C. Occio, N. P. Bader, P. S. Preterias, and S. M. Microbiol, *Biotechnol*, 2008, **77**, 1083.
 [52] (a) M. Willson, I. Alric, J. Perie and Y. H. Sanejouand, *J. Enzyme Inhibition*, 1997, **12**, 101; (b) C. J. Xu, W. E. Klunk, J. N. Kanfer, Q. Xiong, G. Miller and J. W. Pettegrew, *J. Biol. Chem.*, 1996, **271**, 13435.

Compound characterization

Fig. S4 ¹H-NMR of 1-pyrenebutanol, compound 1 in CDCl₃.

Fig. S5 ¹H-NMR of 1-(4-bromobutyl)pyrene, compound 2 in CDCl₃.

Fig. S6 ¹H-NMR of [(2,2'-dipicolyamino)methyl]pyrene, compound 3 in CDCl₃.