Palladium-Catalyzed One-Pot Synthesis of 2-Substituted

Quinazolin-4(3H)-ones from o-Nitrobenzamide and Alcohols

Ke Wang, Hao Chen, Xinyan Dai, Xupeng Huang and Zhiqiang Feng*

Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.

* Correspondence: fengzhq@imm.ac.cn.

Supplementary Data

Table of Contents	Page
1. General Information	S2
2. General Procedure for the Preparation of the Target Compounds	S2
3. Analytical Data of the Target Compounds	S3
4. References	S13
5. ¹ H NMR and ¹³ C NMR Spectra of the Target Compounds	S14

1. General Information

All materials were purchased from commercial suppliers and used without further purification, if not stated otherwise. All reactions involving air-sensitive reagents were performed under an argon atmosphere. Melting points were determined on an INESA SGW_R X-4A micro melting point apparatus and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on Varian Mercury 400 (1H, 400 MHz; 13C, 100 MHz) or Varian Mercury 500 (1H, 500 MHz; 13C, 125 MHz) spectrometers. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity, integration, and coupling constant (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, m = multiplet. High-resolution mass spectra (HRMS) was recorded on a Thermo Exactive Plus spectrometer. The ionization method was ESI and the mass analyzer type was orbitrap.

2. General Procedure for the Preparation of the Target Compounds

A 10 mL sealed tube was charged with catalyst (0.1 mmol), *o*-nitrobenzamides(1 mmol), solvent (1-2 mL) and benzyl alcohol (2.5 mmol), and purged with argon three times. The reaction was then heated to 140 °C for 8 h. After cooling to room temperature, the solvent was removed under vacumm and the residue was purified by flash column chromatography on silica gel, using petroleum ether and EtOAc as eluent to afford the target compound.

3. Analytical Data of the Target Compounds

2-phenylquinazolin-4(3H)-one (3a)¹

White solid, Yield: 87%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.55 (s, 1H), 8.22 – 8.15 (m, 3H), 7.88 – 7.81 (m, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.50 (m, 4H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3, 152.4, 148.8, 134.7, 132.8, 131.5, 128.7, 127.8, 127.6, 126.7, 125.9, 121.1. . HRMS (ESI) calcd for C₁₄H₁₁N₂O[M+H]⁺ 223.0866, found 223.0866.

2-(o-tolyl)quinazolin-4(3H)-one (3b)²

White solid, Yield: 69%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.45 (s, 1H), 8.18 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.94 – 7.78 (m, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.59 – 7.49 (m, 2H), 7.44 (td, *J* = 7.5, 1.3 Hz, 1H), 7.39 – 7.30 (m, 2H), 2.39 (s, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.2, 154.8, 149.2, 136.6, 134.9, 134.7, 131.0, 130.3, 129.6, 127.8, 127.1, 126.2, 126.1, 121.4, 20.0. HRMS (ESI) calcd for C₁₅H₁₃N₂O[M+H]⁺ 237.1022, found 237.1028.

2-(m-tolyl)quinazolin-4(3H)-one (3c)²

White solid, Yield: 80%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.47 (s, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 8.03 (s, 1H), 7.98 (d, *J* = 7.3 Hz, 1H), 7.84 (t, *J* = 7.9 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.46 - 7.40 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3 , 152.5 , 148.8 , 138.0 , 134.7 , 132.7 , 132.1 , 128.6 , 128.4 , 127.6 , 126.6 , 125.9 , 125.0 , 121.1 , 21.1 . HRMS (ESI) calcd for C₁₅H₁₃N₂O[M+H]⁺ 237.1022, found 237.1028.

2-(p-tolyl)quinazolin-4(3H)-one (3d)²

White solid, Yield: 78%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.47 (s, 1H), 8.16 (dd, *J* = 7.9, 1.5 Hz, 1H), 8.04 (s, 1H), 7.98(d, *J* = 7.9, 1H), 7.87 – 7.81 (m, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.51(m, 1H), 7.36-7.40 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3 , 152.4 , 148.8 , 138.0 , 134.6 , 132.7 , 132.1 , 128.6 , 128.4 , 127.6 , 126.6 , 125.9 , 125.0 , 121.1 , 21.0 . HRMS (ESI) calcd for C₁₅H₁₃N₂O[M+H]⁺ 237.1022, found 237.1019.

2-(2-fluorophenyl)quinazolin-4(3H)-one (3e)³

White solid, Yield: 46%.

¹H NMR (500 MHz, DMSO- d_6) δ 12.61 (s, 1H), 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.89-7.85 (m, 1H), 7.80 (td, J = 7.5, 1.8 Hz, 1H), 7.75 (dd, J = 8.2, 1.1 Hz, 1H), 7.66-7.62 (m, 1H), 7.60-7.56 (m, 1H), 7.45 – 7.34 (m, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 161.6 , 159.7 (d, J = 250.8 Hz) , 150.1 , 148.8 , 134.8 , 133.0 (d, J = 8.7 Hz) , 131.2 , 127.6 , 127.2 , 126.0 , 124.8 (d, J = 3.4 Hz) , 122.3 (d, J = 13.0 Hz) , 121.2 , 116.2 (d, J = 21.3 Hz) . HRMS (ESI) calcd for C₁₄H₁₀N₂OF[M+H]⁺ 241.0772, found 241.0770.

2-(3-fluorophenyl)quinazolin-4(3H)-one (3f)³

White solid, Yield: 82%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.61 (s, 1H), 8.17 (d, *J* = 7.9 Hz, 1H), 8.07 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 10.4 Hz, 1H), 7.90 – 7.81 (m, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.64-7.53 (m, 2H), 7.48-7.43 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.2 , 162.2 (d, *J* = 244.2 Hz) , 151.1 , 148.6 , 135.1 (d, *J* = 8.1 Hz), 134.8 , 130.9 (d, *J* = 8.3 Hz), 127.7 , 127.1 , 126.0 , 124.1 , 121.2 , 118.3 (d, *J* = 21.1 Hz) , 114.7 (d, *J* = 24.0 Hz) . HRMS (ESI) calcd for C₁₄H₁₀N₂OF[M+H]⁺ 241.0772, found 241.0769.

2-(4-fluorophenyl)quinazolin-4(3H)-one (3g)²

White solid, Yield: 82%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.58 (s, 1H), 8.30 – 8.23 (m, 2H), 8.16 (dd, J = 7.9, 1.2 Hz, 1H), 7.85 (td, J = 7.8, 7.2, 1.5 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.44 – 7.36 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.1 (d, J = 250.4 Hz), 162.3 , 151.4 , 148.7 , 134.7 , 130.4 (d, J = 9.1 Hz) , 129.3 (d, J = 2.9 Hz), 127.5 , 126.7 , 125.9 , 121.0 , 115.7 (d, J = 22.0 Hz) .HRMS (ESI) calcd for C₁₄H₁₀N₂OF[M+H]⁺ 241.0772, found 241.0771.

2-(3-methoxyphenyl)quinazolin-4(3H)-one (3h)²

White solid, Yield: 76%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.55 (s, 1H), 8.17 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.88 – 7.73 (m, 4H), 7.57 – 7.51 (m, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.16 (dd, *J* = 8.1, 2.2 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3 , 159.4 , 152.1 , 148.7 , 134.7 , 134.1 , 129.8 , 127.6 , 126.7 , 125.9 , 121.1 , 120.2 , 117.7 , 112.6 , 55.5 . HRMS (ESI) calcd for C₁₅H₁₃N₂O₂[M+H]⁺ 253.0972, found 253.0978.

2-(4-methoxyphenyl)quinazolin-4(3H)-one (3i)²

White solid, Yield: 75%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.42 (s, 1H), 8.21 (d, *J* = 8.9 Hz, 2H), 8.15 (d, *J* = 7.4 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3, 161.9, 151.9, 148.9, 134.5, 129.5, 127.3, 126.1, 125.8, 124.8, 120.7, 114.0, 55.5. HRMS (ESI) calcd for C₁₅H₁₃N₂O₂[M+H]⁺ 253.0972, found 253.0968.

2-(2-chlorophenyl)quinazolin-4(3H)-one (3j)²

White solid, Yield: 60%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.63 (s, 1H), 8.18 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.86 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.75 – 7.65 (m, 2H), 7.65 – 7.53 (m, 3H), 7.50 (dt, *J* = 7.4, 1.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.5 , 152.3 , 148.8 , 134.7 , 133.9 , 131.7 , 131.5 , 131.0 , 129.7 , 127.5 , 127.3 , 127.2 , 125.9 , 121.3 . HRMS (ESI) calcd for C₁₄H₁₀N₂OCl[M+H]⁺ 257.0476, found 257.0478.

2-(4-chlorophenyl)quinazolin-4(3H)-one (3k)²

White solid, Yield: 73%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.61 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 2H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3, 152.4, 148.6, 136.4, 134.8, 131.6, 129.7, 128.8, 127.6, 126.9, 126.0, 121.1. HRMS (ESI) calcd for C₁₄H₁₀N₂OCl[M+H]⁺ 257.0476, found 257.0476.

2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (3l)⁴

White solid, Yield: 76%.

¹H NMR (400 MHz, DMSO- d_6) δ 12.36 (s, 1H), 8.23-8.17 (m, 3H), 7.63-7.51 (m, 4H), 7.39 (t, J = 7.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 162.1, 151.1, 148.4, 136.6, 134.7, 131.1 (q, J = 35.0 Hz), 128.7, 127.6, 127.1, 125.9, 125.5 (q, J = 3.5 Hz), 123.9 (q, J = 270.8 Hz), 121.2. HRMS (ESI) calcd for C₁₅H₁₀N₂OF₃[M+H]⁺ 291.0740, found 291.0731.

2-(thiophen-2-yl)quinazolin-4(3H)-one (3m)²

White solid, Yield: 66%.

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.66 (s, 1H), 8.24 (d, *J* = 3.8 Hz, 1H), 8.16 – 8.10 (m, 1H), 7.88 (d, *J* = 5.0 Hz, 1H), 7.85 – 7.77 (m, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 4.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.9 , 148.7 , 147.9 , 137.4 , 134.8 , 132.3 , 129.5 , 128.6 , 127.0 , 126.4 , 126.1 , 121.0 . HRMS (ESI) calcd for C₁₂H₉N₃OS[M+H]⁺ 229.0430, found 229.0428.

2-(6-methylpyridin-2-yl)quinazolin-4(3H)-one (3n)⁵

White solid, Yield: 83%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.65 (s, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.95 (t, *J* = 7.8Hz, 1H), 7.88 (t, *J* = 8.1, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 160.8, 157.9, 150.0, 148.6, 147.7, 138.2, 134.8, 127.8, 127.3, 126.2, 122.1, 119.2, 23.8. HRMS (ESI) calcd for C₁₄H₁₂N₃O[M+H]⁺ 238.0975, found 238.0989.

2-(pyridin-3-yl)quinazolin-4(3H)-one² (3o)⁴

White solid, Yield: 54%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.74 (s, 1H), 9.30 (d, *J* = 1.8 Hz, 1H), 8.76 (dd, *J* = 4.8, 1.5 Hz, 1H), 8.50 (dt, *J* = 8.2, 1.8 Hz, 1H), 8.18 (d, *J* = 8.7 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.61 – 7.54 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.2, 151.9, 150.8, 149.8, 148.6, 135.5, 134.8, 127.7, 127.0, 126.0, 123.6, 121.2. HRMS (ESI) calcd for C₁₃H₁₀N₃O[M+H]⁺ 224.0818, found 224.0815.

2-(pyridin-4-yl)quinazolin-4(3H)-one (3p)³

White solid, Yield: 48%.

¹H NMR (400 MHz, DMSO- d_6) δ 12.76 (s, 1H), 8.78 (d, J = 6.0 Hz, 2H), 8.18 (d, J = 7.9 Hz, 1H), 8.11 (d, J = 6.0 Hz, 2H), 7.89 - 7.85 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.61 - 7.54 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 162.1, 150.6, 150.3, 148.3,

140.0 , 134.9 , 127.9 , 127.5 , 126.0 , 121.7 , 121.6 . HRMS (ESI) calcd for $C_{13}H_{10}N_3O[M\!+\!H]^+$ 224.0818, found 224.0811.

2-(thiazol-5-yl)quinazolin-4(3H)-one (3q)

White solid, Yield: 78%, mp 293-294°C

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.87 (s, 1H), 9.32 (s, 1H), 8.91 (s, 1H), 8.14 (d, *J* = 7.9 Hz, 1H), 7.83 (t, *J* = 6.5 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.53 (t, *J* = 7.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.7, 159.1, 148.5, 146.5, 144.5, 134.9, 133.9, 127.2, 127.0, 126.1, 121.1. HRMS (ESI) calcd for C₁₁H₈N₃OS[M+H]⁺ 230.0383, found 230.0380.

2-cyclohexylquinazolin-4(3H)-one (3r)⁶

White solid, Yield: 64%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.09 (s, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 2.58 (t, *J* = 11.7 Hz, 1H), 1.91 (d, *J* = 12.1 Hz, 2H), 1.80 (d, *J* = 12.2 Hz, 2H), 1.72 – 1.51 (m, 3H), 1.38 – 1.19 (m, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.0, 160.8, 149.0, 134.3, 127.0, 126.0, 125.72, 121.0, 32.9, 30.3, 25.6, 25.4. HRMS (ESI) calcd for C₁₄H₁₇N₂O[M+H]⁺ 229.1335, found 229.1334.

2-propylquinazolin-4(3H)-one (3s)³

White solid, Yield: 31%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.16 (s, 1H), 8.08 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.80 - 1.70 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.7, 157.2, 148.9, 134.2, 126.7, 125.8, 125.6, 120.7, 36.3, 20.1, 13.4. HRMS (ESI) calcd for C₁₁H₁₃N₂O[M+H]⁺ 189.1022, found 189.1019.

2-pentylquinazolin-4(3H)-one (3t)⁶

White solid, Yield: 42%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.16 (s, 1H), 8.08 (dd, J = 7.9, 1.5 Hz, 1H), 7.78-7.74 (m, 1H), 7.59 (d, J = 8.0, 1H), 7.49 – 7.38 (m, 1H), 2.59 (t, J = 7.5, 2H), 1.76 – 1.68 (m, 2H), 1.33 - 1.26 (m, 4H), 0.86 (t, J = 6.8, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.9 , 157.6 , 149.0 , 134.3 , 126.9 , 125.9 , 125.7 , 120.8 , 34.5 , 30.8 , 26.6 , 21.9 , 13.9 . HRMS (ESI) calcd for C₁₃H₁₇N₂O[M+H]⁺ 217.1335, found 217.1331.

2-(5-hydroxypentyl)quinazolin-4(3H)-one (3u)

White solid, Yield: 48%, mp 152-153 °C.

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.16 (s, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 4.35 (t, *J* = 5.2 Hz, 1H), 3.41 - 3.37 (m, 2H), 2.60 (t, *J* = 6.0 Hz, 2H), 1.76 - 1.69 (m, 2H), 1.48 - 1.43 (m, 2H), 1.38 - 1.32 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.3 , 158.0 , 149.5 , 134.8 , 127.3 , 126.4 , 126.2 , 121.3 , 121.2 , 61.1 , 35.1 , 32.7 , 27.2 , 25.6 . HRMS (ESI) calcd for C₁₃H₁₇N₂O₂[M+H]⁺ 233.1285, found 233.1292.

7-fluoro-2-phenylquinazolin-4(3H)-one (3bb)7

White solid, Yield: 87%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.64 (s, 1H), 8.26 – 8.15 (m, 3H), 7.66 – 7.47 (m, 4H), 7.38 (td, *J* = 8.7, 2.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.9 (d, *J* = 251.9 Hz), 161.6, 153.8, 150.9 (d, *J* = 13.5 Hz), 132.5, 131.7, 129.1 (d, *J* = 40.1 Hz), 128.7, 128.0, 118.1, 115.3 (d, *J* = 23.7 Hz), 112.7 (d, *J* = 21.6 Hz).HRMS (ESI) calcd for C₁₄H₁₀N₂OF[M+H]⁺ 241.0772, found 241.0770.

6-fluoro-2-phenylquinazolin-4(3H)-one (3bc)⁸

White solid, Yield: 85%.

¹H NMR (400 MHz, DMSO- d_6) δ 12.61 (s, 1H), 8.17 (d, J = 7.6 Hz, 2H), 7.82 (dd, J = 8.7, 5.2 Hz, 2H), 7.75 - 7.71 (m, 1H), 7.60 - 7.56 (m, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 161.7, 160.0 (d, J = 245.9 Hz), 151.9, 145.7, 132.6, 131.5, 130.3, 128.7, 127.8, 123.1 (d, J = 24.2 Hz), 122.3 (d, J = 9.8 Hz), 110.6 (d, J = 23.4 Hz). HRMS (ESI) calcd for C₁₄H₁₀N₂OF[M+H]⁺ 241.0772, found 241.0780.

6-chloro-2-phenylquinazolin-4(3H)-one (3bd)⁸

White solid, Yield: 84%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.72 (s, 1H), 8.18 (d, *J* = 7.2 Hz, 2H), 8.09 (d, *J* = 2.5 Hz, 1H), 7.86 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.63 – 7.54 (m, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.2 , 152.7 , 147.4 , 134.6 , 132.3 , 131.5 , 130.7 , 129.6 , 128.5 , 127.7 , 124.8 , 122.1 . HRMS (ESI) calcd for C₁₄H₁₀N₂OCl [M+H]⁺ 257.0476, found 257.0476.

5-chloro-2-phenylquinazolin-4(3H)-one (3be)⁷

White solid, Yield: 85%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.55 (s, 1H), 8.18 (d, *J* = 7.5 Hz, 2H), 7.75 (t, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.77 - 7.51 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 160.4 , 153.0 , 151.3 , 134.4 , 132.6 , 132.2 , 131.7 , 128.9 , 128.7 , 127.9 , 127.2 , 118.0 . HRMS (ESI) calcd for C₁₄H₁₀N₂OCl[M+H]⁺ 257.0476, found 257.0477.

8-methyl-2-phenylquinazolin-4(3H)-one (3bf)²

White solid, Yield: 86%.

¹H NMR (400 MHz, DMSO- d_6) δ 12.53 (s, 1H), 8.24 (d, J = 6.8 Hz, 2H), 8.01 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.60 - 7.55 (m, 3H), 7.40 (t, J = 7.6 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 162.6 , 151.1 , 147.2 , 135.7 , 135.1 , 133.0 , 131.4 , 128.7 , 127.8 , 126.1 , 123.6 , 121.0 , 17.3 . HRMS (ESI) calcd for C₁₅H₁₃N₂O [M+H]⁺ 237.1022, found 237.1023.

2-phenyl-7-(trifluoromethyl)quinazolin-4(3H)-one (3bg)⁹

White solid, Yield: 87%.

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.83 (s, 1H), 8.35 (d, *J* = 8.3 Hz, 1H), 8.21 (d, *J* = 7.4 Hz, 2H), 8.05 (s, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.60 (dt, *J* = 26.2, 7.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.6 , 154.0 ,148.9 , 134.3 (q, *J* = 31.9 Hz) , 132.4 , 131.9 , 128.7 , 128.1 , 127.8 , 125.0 , 124.7 (q, *J* = 3.4 Hz) , 123.9 , 123.5 (q, *J* = 240.4 Hz) , 122.3 (q, *J* = 3.1 Hz). HRMS (ESI) calcd for C₁₅H₁₀N₂OF₃ [M+H]⁺ 291.0740, found 291.0732.

6-chloro-2-pentylquinazolin-4(3H)-one (3bh)⁶

White solid, Yield: 46%.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.35 (s, 1H), 8.01 (d, *J* = 2.5 Hz, 1H), 7.79 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.62 (d, *J* = 8.7 Hz, 1H), 2.59 (t, *J* = 7.8 Hz, 2H), 1.72 (p, *J* = 7.3 Hz, 2H), 1.39 – 1.24 (m, 4H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 160.9, 158.2, 147.7, 134.4, 130.2, 129.1, 124.7, 122.1, 34.5, 30.8, 26.5, 21.9, 13.9. HRMS (ESI) calcd for C₁₃H₁₆N₂OCl [M+H]⁺ 251.0946, found 251.0944.

5-chloro-2-pentylquinazolin-4(3H)-one (3bi)

White solid, Yield: 53%, mp 177-178 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.21 (s, 1H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.53 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.45 (dd, *J* = 7.8, 1.2 Hz, 1H), 2.56 (t, *J* = 8.0 H, 2H), 1.79 – 1.62 (m, 2H), 1.39 – 1.23 (m, 4H), 0.96 – 0.79 (m, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 160.0 , 158.5 , 151.6 , 134.1 , 132.4 , 128.3 , 126.5 , 117.8 , 34.2 , 30.8 , 26.4 , 21.9 , 13.9 . HRMS (ESI) calcd for C₁₃H₁₆N₂OCl [M+H]⁺ 251.0946, found 251.0945.

8-methoxy-2-pentylquinazolin-4(3H)-one (3bj)

White solid, Yield: 42%, mp 206-207 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.19 (s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 3.89 (s, 3H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.71 (p, *J* = 7.4 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 4H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.8, 156.3, 154.3, 139.6, 126.1, 121.9, 116.8, 114.9, 55.9, 34.9, 30.9, 27.0, 21.9, 13.9. HRMS (ESI) calcd for C₁₄H₁₉N₂O₂ [M+H]⁺ 247.1441, found 247.1441.

8-methyl-2-pentylquinazolin-4(3H)-one (3bk)

White solid, Yield: 54%, mp 139-140 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.14 (s, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.51 (s, 3H), 1.75 (p, *J* = 7.2 Hz, 2H), 1.36 - 1.30 (m, 4H), 0.88 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.2, 156.3, 147.4, 134.9, 134.6, 125.4, 123.4, 120.7, 34.6, 30.8, 26.4, 21.9, 17.2, 13.9. HRMS (ESI) calcd for C₁₄H₁₉N₂O[M+H]⁺ 231.1492, found 231.1492.

4. References

(1) J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding and W. Su, Tetrahedron Lett., 2008, 23, 3814.

(2) S. Parua, S. Das, R. Sikari, S. Sinha, and N. D. Paul, J. Org. Chem., 2017, 82, 7165.

(3) S. Guo, Y. Li, L. Tao, W. Zhang, and X. Fan, RSC Adv., 2014, 4, 59289.

(3) W. Xu, Y. Jin, H. Liu, Y. Jiang and H. Fu, Org. Lett., 2011, 13, 1274.

(4) K. Upadhyaya, R. K. Thakur, S. K. Shukla, and R. Tripathi, J. Org. Chem., 2016, 81, 5046.

(5) Q. Li, Y. Huang, T. Chen, Y. Zhou, Q. Xu, S. F. Yin, and Li. B. Han, *Org. Lett.*, 2014, 16, 3672.

(6) T. Pandula, A. Kirinde, C. S. Yi, Org. Lett. 2019, 21, 3337.

(7) Z. Z. Wang, Y. Tang, Tetrahedron, 2016, 72, 1330.

(8) W. He, H. Zhao, R. Yao, and M. Cai, RSC Adv., 2014, 4, 50285.

(9) H. Chai, J. Li, L. Yang, H. Lu, Z. Qi, D. Shi, RSC Adv, 2014, 84, 44811.

5. ¹H NMR and ¹³C NMR Spectra of the Target Compounds

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR spectrum of 3a

¹³C NMR spectrum of 3b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of 3e

¹³C NMR spectrum of 3f

¹³C NMR spectrum of 3g

¹³C NMR spectrum of 3h

¹³C NMR spectrum of 3i

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR spectrum of 3k

wk2527/1

_ 12.63

8. 23 8. 22 8. 22 8. 22 8. 19 8. 19 7. 66 7. 76 63 7. 56 7. 56 7. 55 7. 55 7. 75 7. 51 7. 41 7. 37 7. 37

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR spectrum of 30

¹³C NMR spectrum of 3p

8. 10 8. 08 7. 77 7. 77 7. 75 7. 75 7. 61 7. 61 7. 47 7. 47 7. 47 7. 47 7. 48 20200420 wk3638-2/18 Bruker AVANCEIII 40052000420 PROTON2 DMSO D:\\ DATA-2020 16

¹³C NMR spectrum of 3r

¹³C NMR spectrum of 3t

¹³C NMR spectrum of 3u

¹³C NMR spectrum of 3bb

¹³C NMR spectrum of 3be

fl (ppm)

1.86 1.00 0.91 3.71 1

02

S 38

2.631

¹³C NMR spectrum of 3bg

¹³C NMR spectrum of 3bi

¹³C NMR spectrum of 3bj

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

