Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

Degradation and mechanism analysis of chloroxylenol in aqueous solution by gas-liquid discharge plasma combined with ozonation

Keke Ma^a, Lu Zhou*^a, Yu Bai^a, Yiying Xin^a, Mingru Chen^a, Heping Li^b, Chengyu Bao^b, Yuexi Zhou^{a,c}

a School of Environment, Tsinghua University, Beijing 100084, P. R. China

b Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China

c Research Center of Environmental Pollution Control Engineering Technology, Chinese Research

Academy of Environmental Sciences, Beijing 100012, P.R. China

*Corresponding author:

Dr. Lu Zhou

E-mail: zhoulu@tsinghua.edu.cn

Supporting Figure: 5

Supporting Table: 2

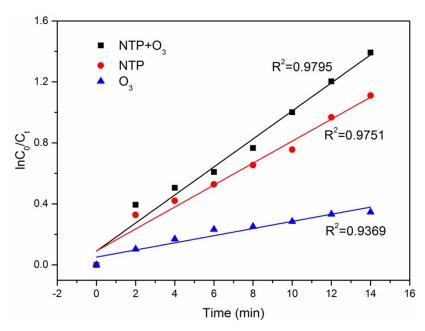


Fig. S1 First-order plots of PXMC degradation as a function of treatment time in three systems.

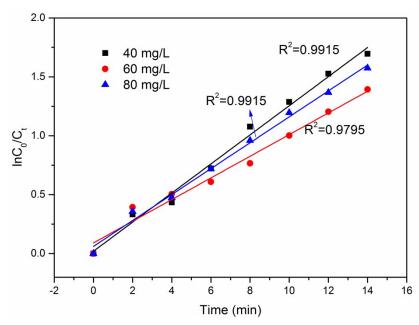


Fig. S2 First-order plots of PXMC degradation as a function of treatment time NTP/O_3 system, for concentrations of 40 50, 60 and 80 mg/L.

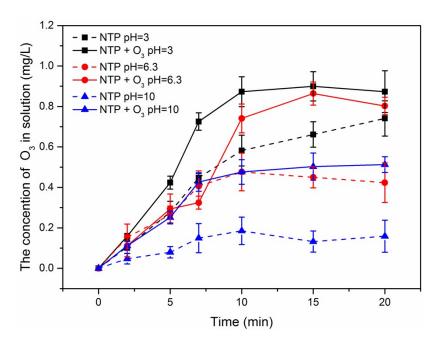


Fig. S3 The concentration of O₃ in solution with different pH in NTP/O₃ and NTP system.

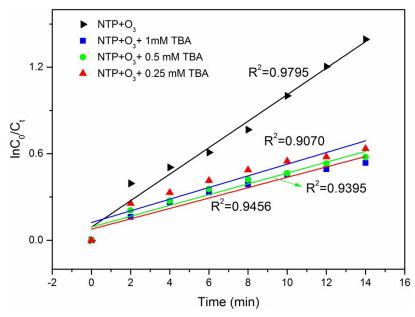


Fig. S4 First-order plots of PXMC degradation as a function of treatment time in NTP/O_3 system with different concentration of radical scavenger

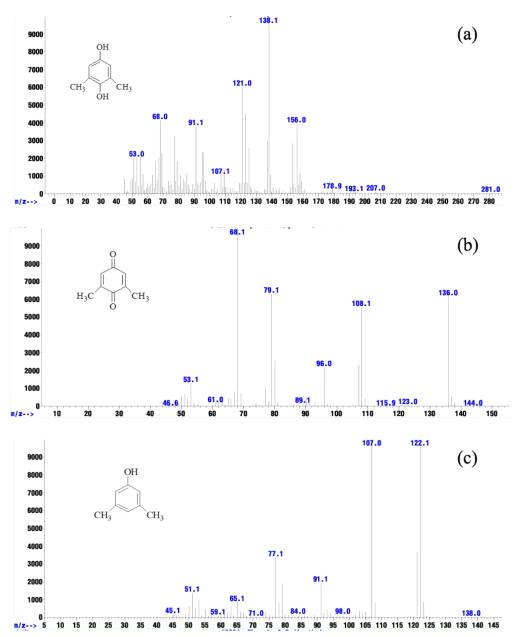


Fig. S5 Mass spectrograms of (a) 2,6-dimethylhydroquinone, (b) 2,6-dimethylbenzoquinone and (c) 3,5-dimethylphenol were Analyzed by GC-MS.

Tab. S1. Main water quality parameters of the secondary effluent

Parameters	Units	
COD_{Cr}	mg/L	62
TOC	mg/L	4.8
NH ₃ -N	mg/L	0.6
Turbidity	NTU	1.9
Conductivity	μS/cm	740
TDS	mg/L	651
pН	/	8.1
Cl-	mg/L	17
CO ₃ ²⁻	mg/L	1.47
HCO ₃ ² -	mg/L	90

Tab. S2 Toxicity results for chloroxylenol and its by-products after NTP/O3 treatment using ECOSAR

		Acute toxicity (mg/L)		Chronic toxicity (ChV)		Hazard		
				(mg/L)			category	
Method	Compound			Green				
		Fish(LC ₅₀)	Daphnid(LC ₅₀)	Algae(Fish	Daphnid	Algae	
				EC ₅₀)				
PCMX	OH CH ₃ Cl CH ₃	2.94	2.29	0.271	0.331	0.305	0.076	toxic
2,6-	ОН							
dimethylhydroquin	СН3	6.21	46.3	2.62	3.36	17.2	0.357	toxic
one	ÓН							
2,6-	O II							
dimethylbenzoqui	H ₃ C CH ₃	6.36	3.63	0.573	0.671	0.441	1.41	toxic
none	Ö							
3,5-	OH	0.070	0.371	0.046	0.0058	1.43	0.011	very
dimethylphenol	CH ₃ CH ₃		- 0.071	0.0.0				toxic

The predicted toxicity values are classified according to the system established by the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) White boxes, not harmful: $LC_{50}/EC_{50}/ChV > 100$; blue boxes, harmful: $100 \ge LC_{50}/EC_{50}/ChV > 10$; green boxes, toxic: $10 \ge LC_{50}/EC_{50}/ChV > 1$; yellow boxes, very toxic: $LC_{50}/EC_{50}/ChV \le 1$.