Supporting Information

$\operatorname{PhI}(\mathbf{O A c})_{2}$-Mediated Intramolecular Oxidative $\mathbf{C - N}$ Coupling and Detosylative Aromatization: an Access to Indolo[2,3-b]quinolines
Quan-Bing Wang \dagger, Shi Tang \dagger^{*}, Ying-Jie Wang, Yue Yuan, Tieqiao Chen and AiQun Jia*
E-mail: tangshi705@163.com
E-mail: ajia@hainanu.edu.cn

Contents

I. Preparation of Starting Materials 1
II. Optimization of the Reaction Conditions 2
III. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 5

I. Preparation of Starting Materials

(i) To a solution of A (1.0 equiv) and (2-aminophenyl)-methanol B (2.0 equiv) in DCE was added TFA ($30 \mathrm{~mol} \%$) at room temperature. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed (monitored by TLC), the reaction was quenched with saturated aqueous NaHCO_{3}, then diluted with DCM and washed with brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product C .
(ii) The intermediate C (1.0 equiv) was dissolved in dry DCM and the solution was cooled to $0^{\circ} \mathrm{C}$. Pyridine (1.3 equiv) and TsCl (1.2 equiv) were then added dropwise. The reaction mixture was warmed to room temperature and stirred at this temperature for 12 h until TLC analysis showed a complete consumption of the starting material. $\mathrm{HCl}(1 \mathrm{~N})$ was added and the organic layer was washed with water. The aqueous layer was extracted with DCM. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography $($ petroleum ether/ethyl acetate $=5 / 1)$ to afford the desired product D .

II. Optimization of the Reaction Conditions ${ }^{\text {a }}$

${ }^{a}$ Reaction condition: 1a (0.2 mmol), Oxidant (0.24 mmol), in Ar, solvent (2 mL) was added at rt and stirred for $12 \mathrm{~h} .{ }^{b}$ Isolated yield in parentheses ${ }^{c}$ PIDA was 4.0 mmol . ${ }^{d} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ is 0.24 mmol .

Screening of protecting group $\mathrm{R}^{\text {a }}$

Entry	Oxidant	Solvent	Temp. $($ $\left.{ }^{\circ} \mathrm{C}\right)$	R $(\%)^{\mathbf{b}}$	
13	PIDA	HFIP	$0-\mathrm{rt}$	benzenesulfonyl	73
14	PIDA	HFIP	$0-\mathrm{rt}$	4-chlorobenzenesulfonyl	86
15	PIDA	HFIP	$0-\mathrm{rt}$	4-fluorobenzenesulfonyl	75
16	PIDA	HFIP	$0-\mathrm{rt}$	methylsulfonyl	74
17	PIDA	HFIP	$0-\mathrm{rt}$	acetyl	trace

${ }^{a}$ Reaction condition: $1(0.2 \mathrm{mmol})$, PIDA (0.24 mmol$)$, in Ar, HFIP (2 mL) was added at $0{ }^{\circ} \mathrm{C}$, then temperature was increased to rt stirred for $12 \mathrm{~h} .{ }^{b}$ Isolated yield in parentheses.

Screening of oxidant and solvent ${ }^{\text {a }}$

Entry	Oxidant	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Additive	Yield (\%) $^{\mathbf{b}}$
18	$\mathrm{H}_{2} \mathrm{O}_{2}$	DCM	$0-\mathrm{rt}$	-	--
29	m-CPBA	DCM	$0-\mathrm{rt}$	-	--
20	m-CPBA	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$0-\mathrm{rt}$	-	23
21	m-CPBA	HFIP^{2}	$0-\mathrm{rt}$	-	25

${ }^{a}$ Reaction condition: $1(0.2 \mathrm{mmol})$, iodobenzene (0.06 mmol), oxidant $(0.24 \mathrm{mmol})$ in Ar , solvent (2 mL) was added at $0^{\circ} \mathrm{C}$, then temperature was increased to rt and stirred for $12 \mathrm{~h} .{ }^{b}$ Isolated yield in parentheses.

III. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

$\underset{\sim}{\infty} \underset{\sim}{\infty}$ ©
© © 6 $\underset{-}{\top}$

 $\underbrace{\infty} \infty \infty \infty \infty$

$\stackrel{\infty}{\infty}$

2b

$\stackrel{\rightharpoonup}{\oplus}$

$2 f$


```
O~NNN NNNNNNNN
```

$\stackrel{\stackrel{\omega}{\rho}}{\stackrel{\circ}{\circ}}$

$\stackrel{\bar{\infty}}{\stackrel{\sim}{\sim}} \stackrel{\sim}{\sim}$
(

2 g

 かっ

$\stackrel{\text { ® }}{\substack{1 \\ \hline}}$

2h


```
\infty
```


∞
$\stackrel{\circ}{4}$
$\stackrel{\circ}{0}$
$\stackrel{\infty}{\sim}$


```
OOMNNNNNNNNNNNNN
```


$\stackrel{\leftrightarrow}{\stackrel{\infty}{\infty}} \stackrel{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$

2s

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$\stackrel{N}{\mathrm{~N}}$

$\begin{aligned} & \stackrel{\infty}{\mu} \\ & \stackrel{\omega}{\omega} \end{aligned}$			
		$1 \mid$	

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$
$\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{\sim}}$

 $\underbrace{\infty \infty \infty \infty \infty \infty \infty} \sim \underbrace{\infty}$

$$
\begin{array}{cc}
\stackrel{\infty}{\infty} & \text { N } \\
\dot{\sim} & \text { in } \\
\hline 1
\end{array}
$$

5
10
10
10

(

2x

-	1	1	1	1	1	1	1	1	+	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

