Supporting Information

High-efficiency oxygen evolution electrode material of carbon material containing NiCo bimetal

Hongxin Guan^a, Na Wang^b, Xuanxuan Feng^b, Shaokang Bian^b, Wei Li*^a,

Yan Chen*b

^aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao, PR China. E-mail: liwei@ysu.edu.cn

^bHebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China. E-mail: chenyan@ysu.edu.cn

* Corresponding author.

I. Materials

1.1 Chemicals:

Nickel foam (Ni purity 99.9%, porosity 95% -98%, pore size 0.2-0.5 mm, PPI 110), Changsha ChangdeLiyuan Technology Co., Ltd., hydrochloric acid (HCl, analytically pure), HebeiYongfei Chemical Factory, acetone (CH₃COCH₃, analytically pure), HebeiYongfei Chemical Factory, Potassium hydroxide (KOH, analytically pure), N, N-dimethylformamide (DMF, analytically pure), absolute ethanol (C₂H₅OH, analytically pure), Tianjin Guangfu Technology Development Co., Ltd., nickel nitrate hexahydrate (Ni(NO₃)₂•6H₂O analytical purity), cobalt nitrate hexahydrate (Co(NO₃)₂•6H₂O, analytical purity), para-dicarboxylic acid (C₈H₆O₄ analytically pure), Aladdin.The above drugs have not been further purified.

1.2 Characterization:

X-ray diffractometer (XRD, Shimadzu XRD-6000, Japan) detected the phase purity and crystal structure of sample, surface morphology of the catalyst tested by field emission scanning electron microscope (FE-SEM, Hitachi S-4800, Japan). Brunner-Emmet-Teller (BET, ASAP 2020 HD88, USA) was used to test and analyze the specific surface area and pore size of the sample. And used simultaneous thermal analyzer (DSC/TG, STA 449C, Germany) to test pyrolysis temperature of analyzed material.

II. Supplementary Figures and Tables

Figure S1. EDS Element spectrum for NiCo-C/NF

Table 51. LDS atomic pe	Teentage T		/111	
element	C	О	Co	Ni

8.74

13.82

22.89

53.30

Au

1.26

Table S1	EDS atomic	nercentage	for	NiCo-C	/NIF
Table ST.	EDS atomic	percentage	101	NICO-C	$/1N\Gamma$

Atomic percentage (%)

Figure S2. (a) Ni-MOF/NF, Co-MOF/NF, NiCo-MOF/NF, Ni-C/NF, Co-C/NF and NiCo-C/NF LSV curves; (b) Tafel plots; (c) Double layer capacitance (C_{dl}); (d-f) Ni-MOFs/NF, Co-MOF/NF and NiCo-MOF/NF CV curves were conducted in the voltage range 0.82-0.92 V vs. RHE with a scan rate of 10 - 120 mV·s⁻¹

Figure S3. TOF of Ni-C/NF; Co-C/NF; NiCo-C/NF; Ni-MOF/NF; Co-MOF/NF and NiCo-MOF/NF current density at 400 mV overpotential.

Figure S4. SEM after electrochemical test for :(a) Ni-C/NF; (b) Co-C/NF

Figure S5. TG for Ni-MOF/NF; Co-MOF/NF; NiCo-MOF/NF.

Figure S6. (a) Corresponding electrochemical impedance spectroscopy (EIS) Nyquist plots of different catalysts. (b) Rct data comparison chart of catalyst.

Material	Before the cycle	After the cycle	Loading weight
NF	49.3 mg	/	/
Ni-C/NF	61.6 mg	57.5 mg	12.3 mg
Co-C/NF	63.5 mg	58.6 mg	14.2 mg
NiCo-C/NF	62.2 mg	60.6 mg	12.9 mg

 Table S2. The loading content of the catalyst (1 cm²)

 Table S3. Comparison for OER activity for NiCo-C/NF with other electrocatalysts

Material	Electolyte	Overpotenti(mV)	Ref
NiCo-MOF/NF	1.0 M KOH	260@10mA cm ⁻²	This work
IrO ₂ /NF	1.0 M KOH	320@10mA cm ⁻²	1
RuO ₂	1.0 M KOH	299@10mA cm ⁻²	2
Co/W-C@NCNSs	1.0 M KOH	323@10mA cm ⁻²	3
Fe/Co-MOF	1.0 M KOH	410@10mA cm ⁻²	4
Co ₂ Fe-MOFs	1.0 M KOH	280@10mA cm ⁻²	5
Co3Fe-MOF	1.0 M KOH	280@10mA cm ⁻²	6
CuO@MIL-53(Cu)	1.0 M KOH	336@10mA cm ⁻²	7

AB&Ni-MOF(1:1)/GC	1.0 M KOH	379@10mA cm ⁻²	8
CoFe@SNCN	1.0 M KOH	306.4@10mA cm ⁻²	9
Co-Fe-P-Se/NC	1.0 M KOH	270@10mA cm ⁻²	10
SNNU-5-FeCoNi	1.0 M KOH	317@10mA cm ⁻²	11
CN-Fe2Co-Fe2Ni	1.0 M KOH	271@10mA cm ⁻²	12
Co-MOF _{72h}	1.0 M KOH	387@10mA cm ⁻²	13

References

- [1] D. S. Raja, H. W. Lin, S. Y. Lu, Nano Energy, 2019, 57, 1-13.
- [2] Y. Shen, S. G. Guo, F. Du, X. B. Yuan, Y. T. Zhang, J. Q. Hu, Q. Shen, W. J. Luo,
- A. Alsaedi, T. Hayat, G. H. Wen, G. L. Li, Y. Zhou, Z. Q. Zou, Nanoscale, 2019, 11, 11765-11773.
- [3] T. Zhao, J. K. Gao, J. Wu, P. P. He, Y. W. Li, J. M. Yao, Energy Technol., 2019, 4, 1800969.
- [4] B. Iqbal ,M. Saleem, S. N. Arshad, J. Rashid, N. Hussain, M. Zaheer, Chem. Eur.J., 2019, 25, 10490-10498.
- [5] S.L. Xie, F. Li, S. X. Xu, J. Y. Li, W. Zeng, Chinese J. Catal., 2019, 40, 1205-1211.

[6] W. X. Li, W. Fang, C. Wu, K. N. Dinh, H. Ren, L. Zhao, C. T. Liu, Q. Y. Yan, J.Mater. Chem. A, 2020, 8, 3658-3666.

- [7] M. Amiri, Z. Tofighi, A. Khodayari, A. Bezaatpour, S. Sohrabnezhad, V. Mishyn,R. Boukherroub, S. Szunerits, Appl. Organomet. Chem., 2020, 10, 1-10.
- [8] X. Wang, B. Li, Y. P. Wu, A. Tsamis, H. G. Yu, S. Liu, J. Zhao, Y. S. Li, D. S. Li, Inorg. Chem., 2020, 59, 4764-4771.
- [9] H. X. Chen, Y. W. Li, H. J. Liu, Q. H. Ji , L. J. Zou , J.K. Gao, J. Solid. State. Chem., 2020, 288, 121421.
- [10] H. B. Wu, J. Wang, J. Yan, Z. X. Wu, W. Jin, Nanoscale, 2019, 11, 20144-20150.
- [11] Y. Y. Xue, J. W. Zhang, Y. P. Li, H. P. Li, Y. Wang, S. N. Li, Y. C. Jiang, M. C.
- Hu, Q. G. Zhai, ACS Appl. Mater. Inter., 2020, 4, 4432-4442.
- [12] H. Dong, X. Zhang, X. C. Yan, Y. X. Wang, X. j. Sun, G. L. Zhang, Y. J. Feng,
- F. M. Zhang, ACS. Appl. Mater. Inter., 2019 11, 45080-45086.
- [13] Z. K. Wang, J. Q. Chen, R. Bi, W. Dou, K. B. Wang, F. F. Mao, H. Wu, S. S.
- Wang, J. Solid. State. Chem., 2020, 284, 121128.