Supplementary Information

Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing

Guoxia Li^{a,b}, Longwei Li^{b,c}, Panpan Zhang^{b*}, Caiyun Chang^{a,b}, Fan Xu^{b,c},

Xiong Pu^{a,b,c*}

^a School of Chemistry and Chemical Engineering, Center on Nanoenergy Researh, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

^b CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.

^c School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

Email: puxiong@binn.cas.cn;zhangpanpan@binn.cas.cn

Fig. S1. DSC curves of the of hydrogels with different contents of GO.

Fig. S2. Stress–strain curves of original and healed hydrogels under different healing times at 25 °C.

Fig. S3. Short-circuit charge quantity Q_{SC} of the TENG.

Fig. S4. I_{SC} of the TENG under different driven frequency from 1 to 5 Hz.

Fig. S5. Stress-strain curves of the pristine VHB film and after attching two cut pieces together in 1 min.

Fig. S6. Comparison of the Q_{SC} of the TENG before and after self-healing.

Fig. S7. Q_{SC} of the TENG stretched to different strains.