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Fragments of XRD scans.

Figure S1. Fragments of XRD scans of the samples studied in this work.
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Figure S2. Typical Rietveld plot obtained for a LiFePO4 sample (# 4) after refinement with MAUD 
software (Rwp = 8.5%). Black asterisks – experimental data; red line – calculated profile; grey line – 
difference curve.
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About reproducibility. We addressed the problem of reproducibility by multiple times fitting the 
same datasets, each time starting from different model parameters, as mentioned in Section 2.1. It is 
the reproducibility that the errors reported in Table 1 characterize.
We tried different Rietveld programs to analyze our data, and have finally chosen MAUD because it 
treated anisotropic crystallite sizes in the most straight-forward way based on the Popa model. With 
TOPAS (5.0), we used the AnisoCS plugin written by Ectors et al. [1] It treated the crystallite shape as 
an ellipsoid, but gave unsatisfactory results. From a discussion with the author of the plugin we 
realized that this could be a consequence of a wide size distribution. MAUD did not have such a 
problem.
In general, TOPAS and MAUD produced very similar crystallite volumes in isotropic and anisotropic 
mode, respectively.

About microstrain. We checked that microstrain did not play any significant role in our samples. The 
values of maximum microstrain never exceeded 3E-4 (as determined by TOPAS) and could safely be 
ignored. In MAUD refinements we assumed zero microstrain.

About impurity phases. According to the standards of XRD phase analysis, the samples studied in our 
work should be characterized as containing no impurity phases above the detection limit. We tried to 
jump a bit above the standards: that is why some unavoidable and unidentified impurities were 
detected (below 0.5%) and mentioned in the paper. In Rietveld refinements the experimental 
intensities of the peaks were in good agreement with those calculated from a single-phase model, 
even though the impurity phase(s) were ignored.

About spherical shape. We don’t assume a spherical shape of the particles. Such a shape was only 
mentioned in the Introduction section as an example of an oversimplified model.
Our choice of a prism (parallelepiped, cuboid, etc) as a typical particle shape was the simplest 
starting assumption possible. Such a choice also implies that we used no model of column length 
distribution function convoluted with the particle size distribution function. In our future work we 
shall certainly come to more complicated models.

2D  and 3D distribution

2D  Normal distribution is described by the equation  
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where m1,2 , σ1,2 and ρ– mean, variance and covariance, respectively.[1]  

3D  Normal distribution is described more compactly by the matrix equation   
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 where  ,  mean ,  correlation moment matrix  
𝑥̅ =  [𝑥1
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]
 , σi -variance , rik – covariance. For Lognorm    . 
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From equation (S2), one can obtain three projections on the corresponding axes (marginal 
distributions)      

(S3),
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which do not contain any covariances.
In our Approach # 3 the results of  TEM measurement approximations by marginal 

distributions (3), the  definition of De Brouckere’s diameter (volume-weighted mean diameter) are 
used 
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The last equality means that  are taken to be equal to the X-ray measurements of anisotropic 𝐷𝑖[4,3]

lVi . The reason for this is specific features of X-ray scattering on volume columns oriented along the 
crystallographic axes and their intensity averaging over the ensemble of powder crystallites.  

For 1D ion diffusion, to describe the dependence of the electrochemical experimental 
parameters of powders on the crystallite size, it is sufficient to use the marginal distributions (S3). But 
to describe 2D processes, information about the covariance is needed.[1]  Consider the case of lamellar 
crystallites with a rectangular parallelepiped shape, the thickness of which x3 is much less than the 
length and width, x1> x2 >> x3. From the values of the initial experimental results of TEM 
measurements, the covariance value ρ can be determined. The results can be represented in the form 
of square matrix NxN sizes with the number of samples fi,k fall in cell coordinates i,k. As an example, 
Figure 4S shows a possible variant of such matrix isoline and two histograms G1 and G2 of marginal 
distributions.
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Figure S3. A possible variant of matrix isoline and two histograms G1 and G2 of marginal distributions.

To obtain the cumulative dependence of the crystallite area one can use the products of the 

approximating functions or the product of the corresponding values of the matrix fi,k, using numerical 

calculations. [2]
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