Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

AA-JSM-LTJK-THE_SI

Supporting Information (SI)

Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed *via* molecular docking simulations

Alice Amitrano,^{all} Jignesh S. Mahajan,^{bll} LaShanda T. J. Korley,^{abc} and Thomas H. Epps, III^{abc*}

^a Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States

^b Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States

^c Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States

" indicates authors contributed equally

*Corresponding Author thepps@udel.edu

Number of Pages: 31

Number of Tables: 3

Number of Figures: 1

Table S1: Binding affinities and median effective concentration $(EC_{50})^1$ values for 17 β -estradiol (E2) and various commercial (bis)phenols. Further information about the binding affinity calculations using AutoDock Vina 4.0 software² is provided in the Experimental section of the main text.

Compound	Binding affinity	EC ₅₀	Log(EC ₅₀ ⁻¹)
	(kcal/mol)	(µM) ¹	
но ССС ОН Е2	-10.6	3.9 × 10 ⁻⁵	10.4
но-С-С-С- 4-(1-adamantyl)phenol	-9.0	8.5 × 10 ⁻³	8.0
A-tert-octylphenol	-7.3	1.7 × 10 ⁻¹	6.7
4-terr-octyphenol	-7.1	5.4 × 10 ⁻¹	6.2
он 4-hydroxyoctanophenone	-6.9	8.8 × 10 ⁻¹	6.0
HO 4-octylphenol	-6.5	1.8×10^{0}	5.7
4-butoxyphenol	-5.9	1.8×10^{1}	4.7
4-hydroxypropriophenone	-5.7	8.3×10^{1}	4.0
но- 4-propoxyphenol	-5.2	1.6×10^{2}	3.8

4-propylphenol	-5.6	1.5×10^{2}	3.8
4,4-cyclohexylidene bisphenol	-9.6	4.3 × 10 ⁻³	8.3
но 4,4-ethylidene bisphenol	-8.1	2.2 × 10 ⁻¹	6.6
HO HO 4 4-dihydroxybenzophenone	-8.1	6.3 × 10 ⁻¹	6.2
Phenol	-4.9	Not detectable estrogenic activity (EA)	-
HO 4-methylphenol	-5.7	Not detectable EA	-
HO 4-ethylphenol	-5.6	Not detectable EA	_
но	-5.3	-	-
Guaiacol			
HO	-5.1	-	-
HO JO Vapillin	-5.9	Not detectable EA ³	-
		1	1

	-6.3	Not detectable EA	-
Benzophenone			
но он	-8.5	4.2×10^{-1}	6.3
Bisphenol A (BPA)			
но ОН	-7.7	8.1 × 10 ⁻³	8.1
Bisphenol F (BPF)			
но он	-8.2	-	_
Tetramethyl bisphenol A			
но он	-8.3	-	-
Tetramethyl bisphenol F			
	-7.9	-	-
Bisphenol S			

Nomenclature of the bisphenols reported in this study

Bisphenols as a function of methoxy-group content (from 0 to 4) and with an unsubstituted, dimethyl-substituted, diethyl-substituted, or dimethoxy-substituted bridging carbon were analyzed and are shown in Table 1. The nomenclature of the compounds in this study indicates the number of methoxy substituents and the type of bridging functional group. For example, BP(0,1)(Un) denotes a bisphenol with zero methoxy groups on the right-most aromatic ring, one methoxy group on the left-most aromatic ring, and an unsubstituted bridging carbon. Similarly, BP(1,2)(Me) indicates a bisphenol with one methoxy group on the right-most aromatic ring, two methoxy groups on the left-most ring, and a dimethyl-substituted bridging carbon. Additional molecules are described in a similar fashion using Et for a diethyl-substituted bridging carbon and MeO for a dimethoxy-substituted bridging carbon.

Table S2: Binding locations of analyzed compounds obtained using AutoDock Vina.

a) Compounds	with	binding	affinities	stronger	than	-8.0	kcal/mol	(i.e.,	more	negative	than	-8.0
kcal/mol)												

Compound	Structure	Binding affinity (kcal/mol)	Binding locations	Binding visualization
4-(1-adamantyl) phenol	но	-9.0	-OH binding at arginine (ARG) 394	
4,4-cyclohexylidene bisphenol	ОН	-9.6	-OH binding at ARG 394	
4,4-ethylidene bisphenol	но он	-8.1	-OH binding at ARG 394	
4,4-dihydroxy- benzophenone	но он	-8.1	-OH binding at ARG 394	
BP(0,0)(Me) [BPA]	но он	-8.5	-OH binding at ARG 394	
BP(0,1)(Me)	но остори	-8.4	-OH binding at ARG 394	
BP(1,1)(Me)	но ос он	-8.6	-OH binding at ARG 394	

BP(0,0)(Et)	но он	-8.3	-OH binding at ARG 394	
BP(0,1)(Et)	но он	-8.1	-OH binding at ARG 394	

b) compounds with omaning unmitted between 0.0 Real mot and 7.0 Real
--

Compound	Structure	Binding affinity (kcal/mol)	Binding locations	Binding visualization
4- <i>tert</i> - octylphenol	- С-он	-7.3	-OH binding at methionine (MET) 388	
4- benzyloxyphenol	о-С-он	-7.1	-OH binding at ARG 394	
BP(0,0)(Un) [BPF]	но он	-7.7	-OH binding at ARG 394	
BP(0,1)(Un)	но о	-7.9	-OH binding at ARG 394	
BP(1,1)(Un)	но о он	-8.0	-OH binding at ARG 394	
BP(0,2)(Un)	но о	-7.1	-OH binding at ARG 394	
BP(1,2)(Un)	НО ОС ОН	-7.5	-OH binding at ARG 394	

BP(0,2)(Me)	но о он	-7.6	-OH binding at ARG 394	
BP(1,1)(Et)	но о он	-7.7	-OH binding at ARG 394	
BP(0,0)(MeO)	но	-7.6	-OH binding at ARG 394	
BP(0,1)(MeO)	но о он	-7.7	-OH binding at ARG 394	
BP(1,1)(MeO)	но о о о	-7.5	-OH binding at ARG 394	

Compound	Structure	Binding affinity (kcal/mol)	Binding locations	Binding visualization
4-hydroxy- octanophenone	ОН	-6.9	-OH binding at glutamic acid (GLU) 353	
4-octylphenol	HO	-6.3	-OH binding at GLU 353 and ARG 394	
BP(2,2)(Un)	но с о	-6.3	-OH binding at ARG 515 and tyrosine (TYR) 459	
BP(1,2)(Me)	но о он	-6.1	-OH binding at GLU 353 and ARG 394	

c) Compounds with binding affinities between -7.0 kcal/mol and -6.0 kcal/mol

Compound	Structure	Binding affinity (kcal/mol)	Binding locations	Binding visualization
4-butoxyphenol	но	-5.9	-OH binding at GLU 353 and ARG 394	
4-hydroxy- propriophenone	ОН	-5.7	-OH binding at GLU 353 and ARG 394	
4-propoxyphenol	но	-5.2	-OH binding at GLU 353 and ARG 394	
4-propylphenol	ОН	-5.6	-OH binding at GLU 353 and ARG 394	
BP(2,2)(Me)	но о о о о	-5.9	-OH binding at ARG 352	
BP(0,2)(Et)	но о	-5.9	-OH binding at MET 396	

BP(1,2)(Et)	но о он	-5.6	-OH binding at ARG 394	
BP(2,2)(Et)	НО ОН	-5.4	-OH binding at MET 396	
BP(0,2)(MeO)	но ос он	-5.7	-OH binding at ARG 394	
BP(1,2)(MeO)	но о о о	-5.6	-OH binding at ARG 503	
BP(2,2)(MeO)		-5.3	-OH binding at ARG 352	

Table S3: Bisphenols with respective binding affinities calculated using AutoDock Vina software, and octanol/water partition coefficients (LogP values) generated using a web-based resource: chemicalize.org by ChemAxon 2020.^{4, 5} [Further information about the LogP calculations is provided in the Experimental section of the main text].

Compound	Structure	Substituents	Total	Binding	LogP
		on the	number of	affinity	
		bridging	methoxy	(kcal/mol)	
		carbon	groups on		
			the rings		
<i>p,p'</i> -BP(0,0)(Un)		Unsubstituted	0	-7.7	3.4
[<i>p,p'</i> -BPF]	но				
<i>m,p'</i> -BP(0,0)(Un)	OH	Unsubstituted	0	-7.9	3.4
	но				
<i>o,p'</i> -BP(0,0)(Un)	ОН	Unsubstituted	0	-7.9	3.4
	но				
<i>m,m'</i> -BP(0,0)(Un)	HO	Unsubstituted	0	-7.8	3.4
<i>o,o'</i> -BP(0,0)(Un)	ОН ОН	Unsubstituted	0	-7.8	3.4
<i>o,m'</i> -BP(0,0)(Un)		Unsubstituted	0	-7.7	3.4
			1	1	1
<i>p,p'</i> -BP(0,1)(Un)		Unsubstituted	1	-7.9	3.3
	но он				
	0				

a) Bisphenols and their isomers with an unsubstituted bridging carbon

<i>m,p'</i> -BP(0,1)(Un)	HO	Unsubstituted	1	-7.7	3.3
<i>o,p'</i> -BP(0,1)(Un)	HO	Unsubstituted	1	-7.8	3.3
<i>m,m'</i> -BP(0,1)(Un)	HO OH	Unsubstituted	1	-7.9	3.3
<i>o,o'</i> -BP(0,1)(Un)	OH OH	Unsubstituted	1	-7.6	3.3
<i>o,m'</i> -BP(0,1)(Un)	HO	Unsubstituted	1	-7.6	3.3
<i>p,p'</i> -BP(1,1)(Un)	но он	Unsubstituted	2	-8.0	3.1
<i>m,p'</i> -BP(1,1)(Un)	HO	Unsubstituted	2	-7.1	3.1
<i>o,p'</i> -BP(1,1)(Un)	HO	Unsubstituted	2	-8.0	3.1
<i>m,m'</i> -BP(1,1)(Un)	HO OH	Unsubstituted	2	-7.3	3.1
<i>o,o'</i> -BP(1,1)(Un)	OH OH OH OH	Unsubstituted	2	-7.4	3.1
<i>o,m'</i> -BP(1,1)(Un)	HO O	Unsubstituted	2	-8.0	3.1

<i>p,p'</i> -BP(0,2)(Un)	но	Unsubstituted	2	-7.1	3.1
<i>m,p'</i> -BP(0,2)(Un)	НО ОС	Unsubstituted	2	-7.3	3.1
<i>o,p'</i> -BP(0,2)(Un)	HO O	Unsubstituted	2	-7.5	3.1
<i>m,m'</i> -BP(0,2)(Un)	HO	Unsubstituted	2	-7.7	3.1
<i>o,m'</i> -BP(0,2)(Un)	HO O O	Unsubstituted	2	-7.7	3.1
<i>p,p'</i> -BP(1,2)(Un)	НО ОН	Unsubstituted	3	-7.5	2.9
<i>m,p'</i> -BP(1,2)(Un)	HO O OH	Unsubstituted	3	-8.0	2.9
<i>o,p'</i> -BP(1,2)(Un)	HO OL	Unsubstituted	3	-7.8	2.9
<i>m,m'</i> -BP(1,2)(Un)	НО ОН	Unsubstituted	3	-7.0	2.9
o,m'-BP(1,2)(Un)	HO OH	Unsubstituted	3	-7.0	2.9

<i>p,p'</i> -BP(2,2)(Un)		Unsubstituted	4	-6.3	2.8
<i>m,p'</i> -BP(2,2)(Un)	но ос ос ос	Unsubstituted	4	-6.2	2.8
<i>m,m'</i> -BP(2,2)(Un)	НО ОН ОН	Unsubstituted	4	-6.1	2.8

Compound	Structure	Substituents	Total	Binding	LogP
		on the	number of	affinity	
		bridging	methoxy	(kcal/mol)	
		carbon	groups on		
			the rings		
<i>p,p'</i> -BP(0,0)(Me)		Dimethyl	0	-8.5	4.0
[<i>p,p'</i> -BPA]	но он				
<i>m,p'</i> -BP(0,0)(Me)	ОН	Dimethyl	0	-8.6	4.0
	но				
<i>o,p'</i> -BP(0,0)(Me)	OH	Dimethyl	0	-8.0	4.0
	но				
<i>m,m'</i> -BP(0,0)(Me)	ноон	Dimethyl	0	-8.7	4.0
<i>o,o'</i> -BP(0,0)(Me)	ОН ОН	Dimethyl	0	-8.3	4.0
<i>o,m'</i> -BP(0,0)(Me)	НО ОН	Dimethyl	0	-8.7	4.0
$= n n' DD(0,1)(M_0)$		Dimathul	1	0 /	20
p,p-Dr(0,1)(Me)		Dimeniyi	1	-0.4	5.0
	но он				
	, o				
<i>m,p'</i> -BP(0,1)(Me)	ОН	Dimethyl	1	-8.2	3.8
	но				
<i>o,p'</i> -BP(0,1)(Me)	ОН	Dimethyl	1	-8.1	3.8
	но				

b) Bisphenols and their isomers with a dimethyl-substituted bridging carbon

<i>m,m'</i> -BP(0,1)(Me)	НО ОН	Dimethyl	1	-8.1	3.8
<i>o,o'</i> -BP(0,1)(Me)	OH OH	Dimethyl	1	-8.1	3.8
<i>o,m'</i> -BP(0,1)(Me)	HO	Dimethyl	1	-7.8	3.8
<i>p,p'</i> -BP(1,1)(Me)	но он	Dimethyl	2	-8.6	3.7
<i>m,p'</i> -BP(1,1)(Me)	но о	Dimethyl	2	-8.5	3.7
<i>o,p'</i> -BP(1,1)(Me)	HO	Dimethyl	2	-8.1	3.7
<i>m,m'</i> -BP(1,1)(Me)	НО ОН	Dimethyl	2	-8.2	3.7
<i>o,o'</i> -BP(1,1)(Me)	OH OH OH	Dimethyl	2	-7.7	3.7
<i>o,m'</i> -BP(1,1)(Me)	HO OH O	Dimethyl	2	-8.2	3.7
<i>p,p'</i> -BP(0,2)(Me)	НО ОС ОН	Dimethyl	2	-7.6	3.7

<i>m,p'</i> -BP(0,2)(Me)	НО ОС	Dimethyl	2	-7.7	3.7
<i>o,p'</i> -BP(0,2)(Me)	HO O	Dimethyl	2	-7.3	3.7
<i>m,m'</i> -BP(0,2)(Me)	но он	Dimethyl	2	-7.9	3.7
o,m'-BP(0,2)(Me)	HO OH	Dimethyl	2	-8.0	3.7
<i>p,p'</i> -BP(1,2)(Me)	НО О ОН	Dimethyl	3	-6.1	3.7
<i>m,p'</i> -BP(1,2)(Me)	ОН ОН ОН	Dimethyl	3	-6.8	3.7
<i>o,p'</i> -BP(1,2)(Me)	HO O	Dimethyl	3	-6.6	3.7
<i>m,m'</i> -BP(1,2)(Me)	НО ОН	Dimethyl	3	-6.2	3.7
<i>o,m'</i> -BP(1,2)(Me)	HO OH	Dimethyl	3	-6.1	3.7

<i>p,p'</i> -BP(2,2)(Me)		Dimethyl	4	-5.9	3.4
	но он				
<i>m,p'</i> -BP(2,2)(Me)	0	Dimethyl	4	-5.9	3.4
	HO O				
<i>m,m'</i> -BP(2,2)(Me)		Dimethyl	4	-6.3	3.4
	НО ОН				

Compound	Structure	Substituents on the bridging carbon	Total number of methoxy groups on the rings	Binding affinity (kcal/mol)	LogP
<i>p,p'</i> -BP(0,0)(Et)	но он	Diethyl	0	-8.3	4.9
<i>m</i> , <i>p</i> '-BP(0,0)(Et)	но	Diethyl	0	-8.5	4.9
<i>o,p'</i> -BP(0,0)(Et)	ОН	Diethyl	0	-8.0	4.9
<i>m,m'</i> -BP(0,0)(Et)	но он	Diethyl	0	-8.6	4.9
<i>o,o'</i> -BP(0,0)(Et)	OH OH	Diethyl	0	-8.0	4.9
<i>o,m'</i> -BP(0,0)(Et)	НО	Diethyl	0	-8.6	4.9
<i>p,p'</i> -BP(0,1)(Et)	но о	Diethyl	1	-8.1	4.7

c) Bisphenols and their isomers with a diethyl-substituted bridging carbon

<i>m,p'</i> -BP(0,1)(Et)		Diethyl	1	-8.3	4.7
	но				
<i>o,p'</i> -BP(0,1)(Et)	HO	Diethyl	1	-8.1	4.7
<i>m,m'</i> -BP(0,1)(Et)	HOLING	Diethyl	1	-8.4	4.7
<i>o,o'</i> -BP(0,1)(Et)	ОНОН	Diethyl	1	-8.0	4.7
<i>o,m'</i> -BP(0,1)(Et)	НО	Diethyl	1	-7.9	4.7
<i>p,p'</i> -BP(1,1)(Et)	но о он	Diethyl	2	-7.7	4.6
<i>m</i> , <i>p</i> '-BP(1,1)(Et)	но о	Diethyl	2	-8.6	4.6
<i>o,p'</i> -BP(1,1)(Et)	НО ОТ	Diethyl	2	-8.1	4.6
<i>m,m'</i> -BP(1,1)(Et)	HO, OH	Diethyl	2	-7.3	4.6

<i>o,o'</i> -BP(1,1)(Et)	он он	Diethyl	2	-7.2	4.6
<i>o,m'</i> -BP(1,1)(Et)	НО С ОН	Diethyl	2	-6.9	4.6
<i>p,p'</i> -BP(0,2)(Et)		Diethyl	2	-5.9	4.6
	ностран				
<i>m,p'</i> -BP(0,2)(Et)		Diethyl	2	-6.3	4.6
	но				
a p' DD(0 2)(Et)		Diathyl	2	6.1	1.6
<i>0,р</i> -ВР(0,2)(Еt)	ОН	Dietnyi	2	-0.1	4.0
	но				
<i>m,m'</i> -BP(0,2)(Et)		Diethyl	2	-5.9	4.6
	НО ОН				
<i>o,m'</i> -BP(0,2)(Et)	о Сон	Diethyl	2	-6.0	4.6
	HO				
			1	1	1
<i>p,p'</i> -BP(1,2)(Et)		Diethyl	3	-5.4	4.4
	НО О, О				

<i>m,p'</i> -BP(1,2)(Et)		Diethyl	3	-6.2	4.4
	ОН				
<i>o,p'</i> -BP(1,2)(Et)	ОН	Diethyl	3	-5.9	4.4
	HO				
<i>m,m'</i> -BP(1,2)(Et)		Diethyl	3	-6.2	4.4
<i>o,m'</i> -BP(1,2)(Et)	но с он	Diethyl	3	-5.4	4.4
<i>p,p'</i> -BP(2,2)(Et)		Diethyl	4	-5.4	4.3
	но он он				
<i>m,p'</i> -BP(2,2)(Et)		Diethyl	4	-5.3	4.3
	HO O				
<i>m,m'</i> -BP(2,2)(Et)		Diethyl	4	-5.8	4.3

Compound	Structure	Substituents on the bridging carbon	Total number of methoxy groups on the rings	Binding affinity (kcal/mol)	LogP
<i>p,p'</i> -BP(0,0)(MeO)	но он	Dimethoxy	0	-7.6	3.4
<i>m,p'</i> -BP(0,0)(MeO)	но	Dimethoxy	0	-7.9	3.4
<i>o,p'</i> -BP(0,0)(MeO)	HO	Dimethoxy	0	-7.6	3.4
<i>m,m'</i> -BP(0,0)(MeO)	HO O OH	Dimethoxy	0	-7.9	3.4
o,o'-BP(0,0)(MeO)	OH O OH	Dimethoxy	0	-7.5	3.4
o,m'-BP(0,0)(MeO)	HO	Dimethoxy	0	-7.7	3.4
<i>p,p'</i> -BP(0,1)(MeO)	HO O OH	Dimethoxy	1	-7.7	3.3

d) Bisphenols and their isomers with a dimethoxy-substituted bridging carbon

<i>m,p'</i> -BP(0,1)(MeO)		Dimethoxy	1	-8.0	3.3
	но				
o,p'-BP(0,1)(MeO)	НО ОС	Dimethoxy	1	-7.7	3.3
<i>m,m'</i> -BP(0,1)(MeO)		Dimethoxy	1	-7.7	3.3
<i>o,o'</i> -BP(0,1)(MeO)		Dimethoxy	1	-7.0	3.3
o,m'-BP(0,1)(MeO)	HO O	Dimethoxy	1	-7.5	3.3
<i>p,p'</i> -BP(1,1)(MeO)	HO O OH	Dimethoxy	2	-7.5	3.1
<i>m,p'</i> -BP(1,1)(MeO)	HO O OH	Dimethoxy	2	-7.9	3.1
<i>o,p'</i> -BP(1,1)(MeO)	HO O	Dimethoxy	2	-7.5	3.1
<i>m,m'</i> -BP(1,1)(MeO)	HO O OH	Dimethoxy	2	-7.8	3.1

<i>o,o'</i> -BP(1,1)(MeO)		Dimethoxy	2	-7.3	3.1
<i>o,m'</i> -BP(1,1)(MeO)		Dimethoxy	2	-7.8	3.1
<i>p,p'</i> -BP(0,2)(MeO)		Dimethoxy	2	-5.7	3.1
<i>m,p'</i> -BP(0,2)(MeO)	но ос ос он	Dimethoxy	2	-6.1	3.1
o,p'-BP(0,2)(MeO)		Dimethoxy	2	-5.8	3.1
<i>m,m'</i> -BP(0,2)(MeO)	НО ОН	Dimethoxy	2	-6.4	3.1
o,m'-BP(0,2)(MeO)		Dimethoxy	2	-5.7	3.1
<i>p,p'</i> -BP(1,2)(MeO)	HO O O O O O O O O O O O O O O O O O O	Dimethoxy	3	-5.6	3.0

<i>m,p'</i> -BP(1,2)(MeO)		Dimethoxy	3	-6.0	3.0
	HO O				
<i>o,p'</i> -BP(1,2)(MeO)		Dimethoxy	3	-5.8	3.0
<i>m,m'</i> -BP(1,2)(MeO)		Dimethoxy	3	-6.5	3.0
	HO OH				
o,m'-BP(1,2)(MeO)	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Dimethoxy	3	-5.6	3.0
<i>p,p'</i> -BP(2,2)(MeO)		Dimethoxy	4	-5.3	2.8
<i>m,p'</i> -BP(2,2)(MeO)	но о о о о о о о о о о о о о о о о о о	Dimethoxy	4	-5.3	2.8
<i>m,m'</i> -BP(2,2)(MeO)		Dimethoxy	4	-5.7	2.8

LogP estimations

LogP values for bisphenolic compounds were generated using a web-based resource: chemicalize.org by ChemAxon 2020.^{4, 5}

Figure S1: a) LogP values of bisphenols as a function of methoxy-group content from 0 to 4: b) unsubstituted bridging carbon, c) dimethyl-substituted bridging carbon, d) diethyl-substituted bridging carbon, and e) dimethoxy-substituted bridging carbon.

Abbreviations

ARG: Arginine

BP:	Bisphenol
-----	-----------

BPA: Bisphenol A

BPF: Bisphenol F

EA: Estrogenic activity

EC₅₀: Median effective concentration

Et: Diethyl-substituted

E2: 17β-estradiol

GLU: Glutamic acid

LogP: Octanol/water partition coefficient

Me: Dimethyl-substituted

MeO: Dimethoxy-substituted

MET: Methionine

TYR: Tyrosine

Un: Unsubstituted

References

1. T. W. Schultz, G. D. Sinks and M. T. D. Cronin, *Environmental Toxicology*, 2002, **17**, 14-23.

- 2. AutoDock Vina, http://vina.scripps.edu/, (accessed June 3, 2021).
- 3. X. Ji, N. Li, S. Yuan, X. Zhou, F. Ding, K. Rao, M. Ma and Z. Wang, *Ecotoxicology* and Environmental Safety, 2019, **175**, 208-214.
- 4. M. Swain, *Journal of Chemical Information and Modeling*, 2012, **52**, 613-615.
- 5. ChemAxon 2020, Software solutions and services for chemistry and biology, https://chemaxon.com/, (accessed June 3, 2021).