Supporting Information

Zr- and Ce-Doped Li₆Y(BO₃)₃ Electrolyte for All-Solid-State Lithium-Ion Battery

Toyoki Okumura,^{a,*} Yoshitaka Shiba,^b Noriko Sakamoto,^b Takeshi Kobayashi,^b Saori Hashimoto,^b

Kentaro Doguchi,^b Harunobu Ogaki,^b Tomonari Takeuchi,^a Hironori Kobayashi^a

- a. Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka 1-8-31, Ikeda, Osaka 563-8577, Japan E-mail: toyoki-okumura@aist.go.jp
- b. Development Division, Canon Optron Inc., 1744-1 Kanakubo, Yuki, Ibaraki 307-0015, Japan

Fig. S1 Expanded synchrotron X-ray diffraction patterns of $Li_{6-x}Y_{1-x}Zr_x(BO_3)_3$, where x = (a) 0, (b) 0.025, (c) 0.05, (d) 0.075, (e) 0.1, (f) 0.2, (g) 0.3, (h) 0.4, (i) 0.6, and those of $Li_{5.975-x}Y_{0.975-x}Zr_xCe_{0.025}$ (BO₃)₃, x = (j) 0, (k) 0.1. Simulated patterns for (I) $Li_6Y(BO_3)_3$ (red dashed line) and (m) ZrO_2 (blue dashed line) are also shown.

Fig. S2 Rietveld refinements of synchrotron X-ray diffraction patterns for (a) undoped Li₆Y(BO₃)₃, (b) Zr-doped Li_{5.975}Y_{0.975}Zr_{0.025}(BO₃)₃, (c) Zr-doped Li_{5.9}Y_{0.9}Zr_{0.1}(BO₃)₃, (d) Ce-doped Li_{5.975}Y_{0.975}Ce_{0.025}(BO₃)₃, and (e) Zr,Ce-doped Li_{5.875}Y_{0.875}Zr_{0.1}Ce_{0.025} (BO₃)₃ (ZC-LYBO). The observed, calculated, and difference plots are shown by black circles, red solid lines, and blue solid lines, respectively. Diffraction positions are indicated by colored bars: black (LYBO-type phase), green (ZrO₂ impurity), and orange (Li₆B₄O₉ impurity).

Table S1 Lattice parameters (*a*, *b*, *c*, *b*), FWHM parameters *U* and reliability factors (R_{wp} , *S*) estimated under the Rietveld refinements for Zr-doped Li_{6-x}Y_{1-x}Zr_x(BO₃)₃, Ce-doped Li_{5.975}Y_{0.975}Ce_{0.025}(BO₃)₃, and Zr,Ce-doped Li_{5.875}Y_{0.875}Zr_{0.1}Ce_{0.025} (BO₃)₃ (ZC-LYBO)

$Li_{6-x} Y_{1-x} Zr_x (BO_3)_3$	<i>a /</i> Å	b/Å	<i>c</i> / Å	β / deg.	$U / \text{deg.}^2$	R _{wp} / %	S / -
x = 0	7.17064(3)	16.40610(6)	6.63187(2)	105.2840(2)	0.014880(6)	6.216	3.9692
x = 0.025	7.1665(2)	16.4189(3)	6.6174(1)	105.315(1)	0.1190(1)	7.556	4.7433
x = 0.05	7.1651(2)	16.4226(3)	6.6133(1)	105.351(1)	0.1351(1)	8.344	5.1733
x = 0.075	7.1676(3)	16.4297(5)	6.6087(3)	105.489(3)	0.8430(4)	6.951	4.3511
$x = 0.1^{*)}$	7.1667(2)	16.4293(5)	6.6083(2)	105.409(2)	0.7902(3)	7.005	4.1655
$x = 0.2^{*)}$	7.1662(3)	16.4243(5)	6.6128(2)	105.452(2)	0.8212(4)	7.666	4.5861
$x = 0.3^{*)}$	7.1667(3)	16.4281(6)	6.6077(3)	105.499(3)	0.9101(5)	7.379	4.6650
$x = 0.4^{*)}$	7.1651(3)	16.4249(6)	6.6081(3)	105.481(3)	0.9636(5)	7.732	4.8452
$x = 0.6^{*)}$	7.1658(6)	16.428(1)	6.6101(5)	105.500(6)	0.945(1)	8.398	5.6458
$Li_{6-y} Y_{1-y} Ce_y (BO_3)_3$	<i>a /</i> Å	<i>b</i> / Å	<i>c</i> / Å	β / deg.	$U / \text{deg.}^2$	R _{wp} / %	S / -
y = 0.025	7.17069(9)	16.4143(1)	6.62903(8)	105.2929(8)	0.023540(3)	9.644	5.8044
$Li_{6-x-y} Y_{1-x-y} Zr_x Ce_y (BO_3)_3$	a / Å	b/Å	c / Å	β / deg.	$U / \text{deg.}^2$	R wp / %	S / -
$x = 0.1, y = 0.025^{*)}$	7.1650(2)	16.4250(4)	6.6120(2)	105.397(2)	0.3081(2)	8.440	5.1604

*) Diffraction patterns for ZrO₂ impurity and Li₆B₂O₉ impurity were also refined for representing profiles.

Fig. S3 (a) Schematic representation of LYBO-type structure. Blue dodecahedra represent $Y(/Zr)O_8$, green triangles represent BO₃, and yellow balls indicate Li ions. Focused Li layer along the *ac* plane is enclosed by a red dashed square. 3D BVSE maps of the *ac* plane for (b) undoped Li₆Y(BO₃)₃, (c) Zr-doped Li_{5.975}Y_{0.975}Zr_{0.025}(BO₃)₃, and (d) Zr-doped Li_{5.9}Y_{0.9}Zr_{0.1}(BO₃)₃.

$\operatorname{Li}_{6-x} \operatorname{Y}_{1-x} \operatorname{Zr}_{x}(\operatorname{BO}_{3})_{3}$	relative density / %			
x = 0	77.1			
x = 0.025	88.2			
x = 0.05	95.2			
x = 0.075	95.9			
x = 0.1	88.2			
x = 0.2	93.0			
x = 0.3	90.8			
x = 0.4	91.1			
x = 0.6	95.2			
$\operatorname{Li}_{6-y} \operatorname{Y}_{1-y} \operatorname{Ce}_{y}(\operatorname{BO}_{3})_{3}$	relative density / %			
<i>y</i> = 0.025	89.3			
$\operatorname{Li}_{6-x-y} \operatorname{Y}_{1-x-y} \operatorname{Zr}_{x} \operatorname{Ce}_{y}(\operatorname{BO}_{3})_{3}$	relative density / %			
x = 0.1, y = 0.025	88.9			

TableS2RelativedensitiesaftersinteringforZr-doped $Li_{6-x}Y_{1-x}Zr_x(BO_3)_3$,Ce-doped $Li_{5.975}Y_{0.975}Ce_{0.025}(BO_3)_3$, and Zr,Ce-doped $Li_{5.875}Y_{0.875}Zr_{0.1}Ce_{0.025}$ (BO3)3 (ZC-LYBO)Ce-doped

Table S3Ionic conductivities for undoped $Li_6Y(BO_3)_3$, Zr-doped $Li_{6-x}Y_{1-x}Zr_x(BO_3)_3$, Ce-doped $Li_{5.975}Y_{0.975}Ce_{0.025}(BO_3)_3$, and Zr,Ce-doped $Li_{5.875}Y_{0.875}Zr_{0.1}Ce_{0.025}$ (BO3)3 (ZC-LYBO) at 27 °C

$\operatorname{Li}_{6-x} \operatorname{Y}_{1-x} \operatorname{Zr}_{x}(\operatorname{BO}_{3})_{3}$	σ / S cm ⁻¹ at 27 °C
x = 0	$5.6 imes 10^{-11}$
x = 0.025	$5.8 imes10^{-6}$
x = 0.05	$8.8 imes10^{-6}$
x = 0.075	$1.3 imes 10^{-5}$
x = 0.1	$1.4 imes 10^{-5}$
x = 0.15	$9.5 imes10^{-6}$
x = 0.2	$1.0 imes 10^{-5}$
x = 0.3	$6.7 imes 10^{-6}$
x = 0.4	$4.7 imes10^{-6}$
x = 0.6	$5.5 imes 10^{-7}$
$\operatorname{Li}_{6-y} \operatorname{Y}_{1-y} \operatorname{Ce}_{y}(\operatorname{BO}_{3})_{3}$	σ / S cm $^{-1}$ at 27 $^{o}\mathrm{C}$
<i>y</i> = 0.025	6.9×10^{-7}
$\operatorname{Li}_{6-x-y}\overline{\operatorname{Y}_{1-x-y}\operatorname{Zr}_{x}\operatorname{Ce}_{y}(\operatorname{BO}_{3})_{3}}$	σ / S cm ⁻¹ at 27 °C
x = 0.1, y = 0.025	$1.7 imes 10^{-5}$

Fig. S4 3D BVSE maps of (a) the *ab* plane and (b) *ac* plane for Ce-doped $Li_{5.975}Y_{0.975}Ce_{0.025}(BO_3)_3$, and of (c) the *ac* plane and (d) *ab* plane for Zr,Ce-doped $Li_{5.875}Y_{0.875}Zr_{0.1}Ce_{0.025}$ (BO₃)₃ (ZC-LYBO).

Fig. S5 Nyquist plots for (a) Zr-doped $Li_{5.9}Y_{0.9}Zr_{0.1}(BO_3)_3$ and (b) Zr,Ce-doped $Li_{5.875}Y_{0.875}Ce_{0.025}Zr_{0.1}(BO_3)_3$ (ZC-LYBO) at various temperatures. (c) Arrhenius plots of Zr-doped $Li_{5.9}Y_{0.9}Zr_{0.1}(BO_3)_3$ (black) and Zr,Ce-doped $Li_{5.875}Y_{0.875}Zr_{0.1}Ce_{0.025}$ (BO₃)₃ (ZC-LYBO) (red).