Supporting Information

Sustainable aromatic polyesters with 1,5-

disubstitutied indole units

Ping Wang¹, Baozhong Zhang¹*

¹ Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box

124, 22100 Lund, Sweden

Figure S1 HMBC NMR spectrum of monomer **3a** in CDCl₃.

Figure S2 HMQC NMR spectrum of monomer **3a** in CDCl₃.

Figure S3 COSY H NMR spectrum of monomer **3a** in CDCl₃.

Figure S4 HMBC NMR spectrum of polymer P3a in CDCl₃.

Figure S5 HMQC NMR spectrum of polymer P3a in CDCl₃.

Figure S6 COSY NMR spectrum of polymer P3a in CDCl₃.

Figure S7 HMBC NMR spectrum of monomer **3b** in CDCl₃.

Figure S8 HMQC NMR spectrum of monomer **3b** in CDCl₃.

Figure S9 COSY NMR spectrum of monomer **3b** in CDCl₃.

Figure S10 HMBC NMR spectrum of polymer P3b in CDCl₃.

Figure S11 HMQC NMR spectrum of polymer **P3b** in CDCl₃.

Figure S12 COSY NMR spectrum of polymer **P3b** in CDCl₃.

Figure S13 HMBC NMR spectrum of monomer **3c** in CDCl₃.

Figure S14 HMQC NMR spectrum of monomer **3c** in CDCl₃.

Figure S15 COSY NMR spectrum of monomer **3c** in CDCl₃.

Figure S16 HMBC NMR spectrum of polymer P3c in CDCl₃.

Figure S17 HMQC NMR spectrum of polymer P3c in CDCl₃.

Figure S18 COSY NMR spectrum of polymer P3c in CDCl₃.

Figure S19 HMBC NMR spectrum of monomer **3d** in CDCl₃.

Figure S20 HMQC NMR spectrum of monomer 3d in CDCl₃.

Figure S21 COSY NMR spectrum of monomer **3d** in CDCl₃.

Figure S22 HMBC NMR spectrum of polymer P3d in CDCl₃.

Figure S23 HMQC NMR spectrum of polymer P3d in CDCl₃.

Figure S24 COSY NMR spectrum of polymer P3d in CDCl₃.

Figure S25 ¹H NMR spectrum of the crude reaction mixture of **3b** synthesis after 24 h.

Figure S26 FT-IR spectra of (A) monomers **3a-d** (A), and (B) monomer **3c** and polymer **P3c**.

Figure S27 Chemical structures of previously reported polyesters with 1,3-disubstitution patterns. **P4a-d** contain only aromatic-aliphatic esters, while **P5a-d** contain 50% aromatic-aliphatic esters (shown in blue color).^{1,2}

Figure S28 Comparison of the TGA (A) weight loss curves and (B) derivative curves of 1,5disubstituted monomers **3a-d** (solid curves) and 1,3-disubstituted monomers **4a-d** (dotted curves) reported before.²

Table S1 T_d^{95} (temperature for 5% weight loss) and T_d (peak values in the derivative curves) according to the TGA measurements of monomers **4a-d** and **3a-d** (TGA curves shown in Fig. S28).

	4a	3 a	4 b	3b	4c	3 c	4d	3d
T _d ⁹⁵ (°C)	184	188	188	192	198	202	208	208
T _d (°C)	244	247	249	255	252	254	260	270

Figure S29 TGA weight-loss curves of polyesters **P3d**, **P4d** and **P5d** (reported earlier) by isothermal heating under nitrogen at the different temperatures, including (A) 250 °C, (B) 275 °C, (C) 300 °C, (D) 325 °C, (E) 350 °C, (F) 375 °C, and (G) 400 °C. The chemical structures of **P4d** and **P5d** are shown in Fig. S27.

Table S2 Time (min) of 10%, 20% and 50% weight loss for **P3d** during isothermal TGA measurements at different temperatures.

Weight	250	275	300	325	350	375	400
loss	(°C)						

10%	>1200	707	176	115	33	20	19
20%	>1200	>1200	284	136	38	21	20
50%	>1200	>1200			70	30	21

Figure S30. Shear storage modulus of **P3d**, **P4d** and **P5d** measured by rheology at the processing temperatures, 160 °C (A) and 180 °C (B).

Figure S31 UV-vis spectra of P3a-d in chloroform.

Figure S32 X-ray diffraction patterns of (A) P3a and (B) P3c solution-casting films.

Figure S33 FTIR spectra of **P3d** before and after crosslinking.

References

- 1 P. Wang, C. R. Arza and B. Zhang, *Polym. Chem.*, 2018, **9**, 4706–4710.
- 2 P. Wang, J. A. Linares-Pastén and B. Zhang, *Biomacromolecules*, 2020, **21**, 1078–1090.