Cyclic oxygen exchange capacity of Ce-doped V₂O₅ materials for syngas production via

high temperature chemical looping reforming of methane

Asim Riaz^a, Wojciech Lipinski^{a*}, Adrian Lowe^{a**}

- ^a Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2601, Australia.
- * Corresponding author. *E-mail*: wojciech.lipinski@anu.edu.au; Tel: +61 2 612 57896
- ** Corresponding author. *E-mail*: <u>adrian.lowe@anu.edu.au</u>; *Tel*: +61 2 612 54881.

Figure SI 1. Schematic diagram of thermochemical testing setup.

Figure SI 2. FESEM micrographs of as-prepared (a) pure V_2O_5 , (b) 3CeV and (c) 9CeV powders.

Figure SI 3. XRD patterns of as-prepared pure and Ce-doped V_2O_5 powders

Figure SI 4. Mass-Spectrometer signals for H_2 and CO recorded during MPO-CDS redox cycles for blank and 1CeV samples.

Figure SI 5. Syngas production rates produced by pure V_2O_3 powders during 5 continuous MPO-CDS redox cycles.

Figure SI 6. Syngas production rates produced by 9CeV powders during MPO–WS cycles.

Figure SI 7.Back scattered SEM images of 3CeV powders, acquired after the MPO–CDS cycling.