Supporting Information For:

Polymerization of a Biscalix[5]arene Derivative

Takehiro Hirao,^{‡,†} Kazushi Fukuta,^{§,†} and Takeharu Haino^{‡,}*

[‡]Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

[§]Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

*Email: haino@hiroshima-u.ac.jp

[†]These authors contributed equally.

Contents

NMR spectra and SEC chromatograms	S2-S15
Figure S24–S31. Determination of association constants by UV/vis spectroscopy	S16-S19
Figure S32. Time-dependent changes in absorbance value	
Figure S33. Determination of association constants by UV/vis spectroscopy	S20

Figure S1. ¹H and ¹³C NMR spectra of 4 in chloroform-*d*.

Figure S2. ¹H and ¹³C NMR spectra of 5 in methanol- d_4 .

Figure S4. ¹H and ¹³C NMR spectra of 1 in chloroform-*d*.

Figure S5. ¹H NMR spectrum of poly-1a in chloroform-d.

Figure S6. Size-exclusion chromatogram of poly-1a (eluent: chloroform).

Figure S7. ¹H NMR spectrum of poly-1b in chloroform-*d*.

Figure S10. Size-exclusion chromatogram of poly-1c (eluent: chloroform).

Figure S12. Size-exclusion chromatogram of poly-1d (eluent: chloroform).

Figure S14. Size-exclusion chromatogram of poly-1e (eluent: chloroform).

Figure S16. Size-exclusion chromatogram of poly-1f (eluent: chloroform).

Figure S17. ¹H NMR spectrum of poly-1g in chloroform-d.

Figure S19. ¹H NMR spectrum of poly-1h in chloroform-*d*.

Figure S21. ¹H NMR spectrum of poly-9 in chloroform-*d*.

Figure S22. Size-exclusion chromatogram of poly-9 (eluent: chloroform).

Figure S23. ¹H NMR spectrum of poly-2 in chloroform-*d*.

Figure S24. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1a** at 25 °C in chloroform. The concentrations of poly-**1a** are a–t: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10, 11, 12×10^{-5} mol L⁻¹ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1a**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1a**, and Abs of poly-**1a** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S25. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1b** at 25 °C in chloroform. The concentrations of poly-**1b** are a–s: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10, $12 \times 10^{-5} \text{ mol } \text{L}^{-1}$ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1b**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1b**, and Abs of poly-**1b** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S26. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1c** at 25 °C in chloroform. The concentrations of poly-**1c** are a–s: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10, 12×10^{-5} mol L⁻¹ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1c**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1c**, and Abs of poly-**1c** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S27. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1d** at 25 °C in chloroform. The concentrations of poly-**1d** are a–s: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10, $12 \times 10^{-5} \text{ mol } \text{L}^{-1}$ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1d**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1d**, and Abs of poly-**1d** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S28. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1e** at 25 °C in chloroform. The concentrations of poly-**1e** are a–s: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10, 11, 12×10^{-5} mol L⁻¹ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1e**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1e**, and Abs of poly-**1e** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S29. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1f** at 25 °C in chloroform. The concentrations of poly-**1f** are a–s: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10, 12×10^{-5} mol L⁻¹ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1f**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1f**, and Abs of poly-**1f** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S30. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1g** at 25 °C in chloroform. The concentrations of poly-**1g** are a–r: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 9.0, 10×10^{-5} mol L⁻¹ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1g**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1g**, and Abs of poly-**1g** in the presence of **2** $(10 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S31. (a) UV/vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (b) its expanded view upon addition of poly-**1h** at 25 °C in chloroform. The concentrations of poly-**1h** are a–k: 0.0, 0.8, 1.6, 2.4, 3.2, 4.0, 5.6, 7.2, 8.8, 10, $12 \times 10^{-5} \text{ mol } \text{L}^{-1}$ estimated from its M_n. The red line indicates the absorption spectrum of **2** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. (c) Plot of normalized ΔAbs (400 nm) against [poly-**1h**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_{0} , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1h**, and Abs of poly-**1h** in the presence of **2** $(12 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively.

Figure S32. Time-dependent changes in the absorbance value at 427 nm seen in (a) an equimolar mixture of 1 and 2, and (b) an equimolar mixture of poly-1b and 2. The initial concentration of 1, 2 and poly-1b is 2.0×10^{-5} mol L⁻¹.

Figure S33. (a) UV/vis absorption spectra of poly-2 ($2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) and (b) its expanded view upon addition of poly-**1c** at 25 °C in toluene. The concentrations of poly-**1c** are a–s: 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.5, 4.0, 4.7, 5.5, 6.4, 7.1, 8.0, 8.9, 10, $12 \times 10^{-5} \text{ mol } \text{L}^{-1}$ estimated from its M_n. The red line indicates the absorption spectrum of poly-**2** ($2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$). (c) Plot of normalized ΔAbs (400 nm) against [poly-**1c**] and the fitting curve obtained by a 1:1 fitting model, where Abs_{obs} , Abs_0 , and Abs_{end} denote observed Abs at each concentration, Abs of poly-**1c**, and Abs of poly-**1c** in the presence of poly-**2** ($12 \times 10^{-5} \text{ mol } \text{L}^{-1}$), respectively.