

Supplementary Information

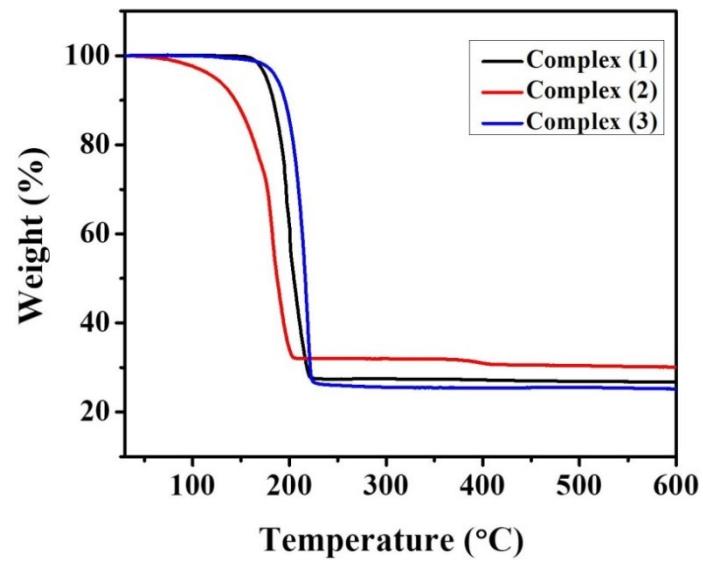
Low temperature scalable synthetic approach enabling high bifunctional electrocatalytic performance of NiCo_2S_4 and CuCo_2S_4 thiospinels

Ginena Bildard Shombe,^{1,2} Shumaila Razzaque,³ Malik Dilshad Khan,^{1,4*} Tebello Nyokong,⁵ Philani Mashazi,^{5,6} Jonghyun Choi,⁷ Sanket Bhoyate,⁷ Ram K. Gupta,⁷ and Neerish Revaprasadu^{1*}

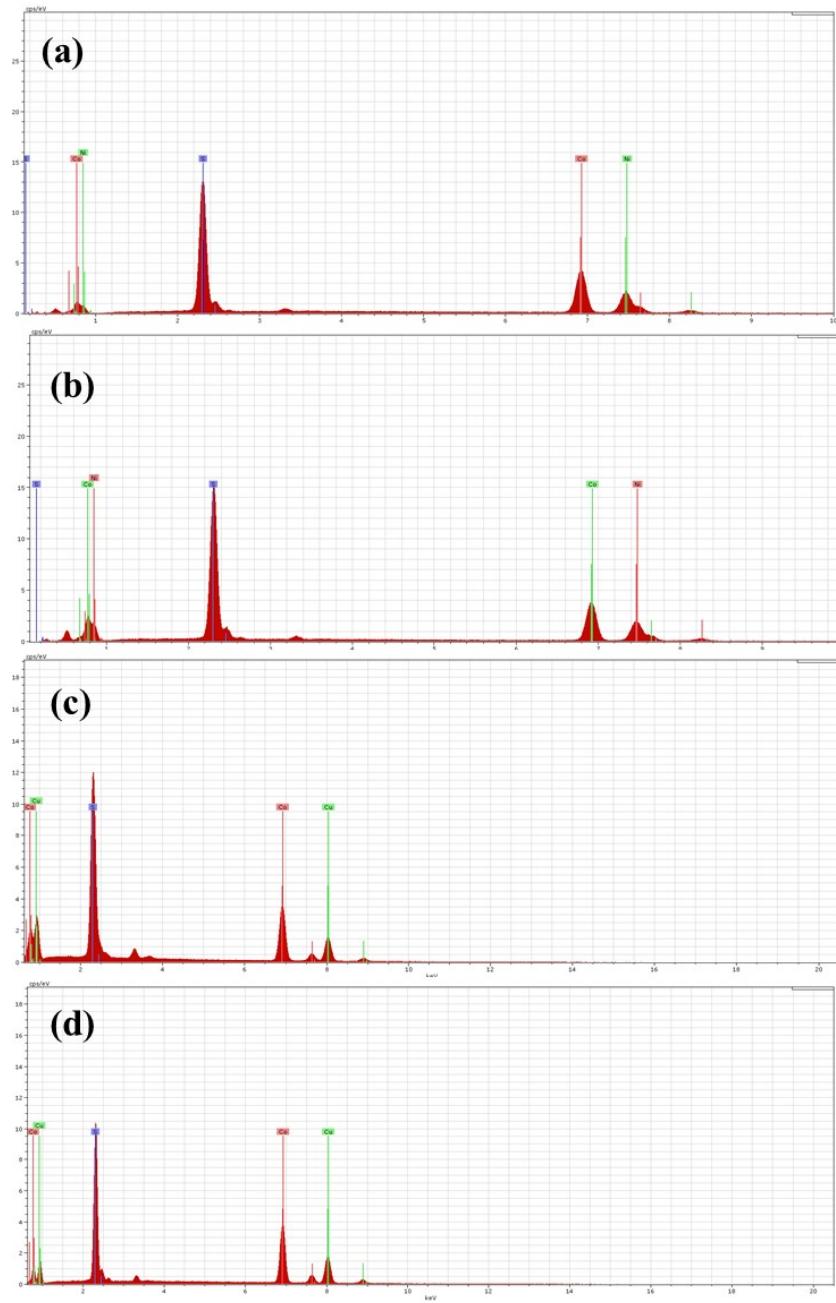
¹Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa.

²Chemistry Department, University of Dar-es-Salaam, P.O. Box 35061, Dar-es-Salaam, Tanzania.

³Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, China.


⁴Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.

⁵Institute for Nanotechnology Innovation, P.O. Box 94, Rhodes University, Makhanda 6140, South Africa.


⁶Department of Chemistry, P. O. Box 94, Rhodes University, Makhanda 6140, South Africa.

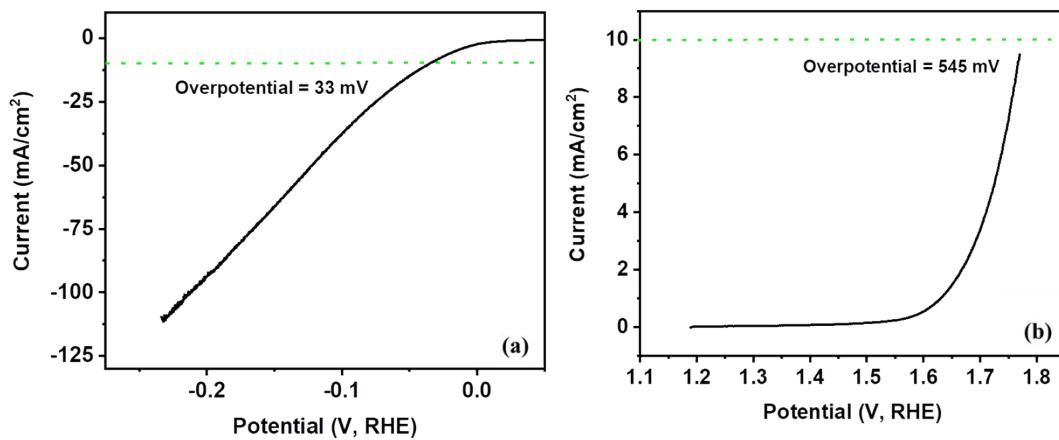
⁷Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA.

*Email: RevaprasaduN@unizulu.ac.za; malikdilshad@hotmail.com

Figure S1. TGA curves of complexes nickel ethyl xanthate (**1**), copper ethyl xanthate (**2**), and cobalt ethyl xanthate (**3**).

Figure S2. EDX spectra of NiCo_2S_4 synthesized at (a) 200 °C and (b) 300 °C. EDX spectra of CuCo_2S_4 synthesized at (c) 200 °C and (d) 300 °C

Table S1. Comparison chart with previously reported supercapacitor electrodes.


Electrode Material	Synthetic Method	Specific Capacitance (F/g)	Current Density (A/g)	Reference
NiCo ₂ S ₄	Sacrificial template method	437	1	¹
NiCo ₂ S ₄	Solvothermal	519.51	2	²
NiCo ₂ S ₄	Hydrothermal	744	1	³
NiCo ₂ S ₄ @MnO ₂	Hydrothermal	520.7	1	⁴
AMC@ NiCo ₂ S ₄	Hydrothermal	651.1	0.6	⁵
CuCo ₂ S ₄ /polyacrylonitrile		385	1	⁶
CuCo ₂ S ₄ @NiCo ₂ S ₄	Hydrothermal	539.2 C/g	1	⁷
CuCo ₂ S ₄	Hydrothermal and sulfuration process	373.4	1	⁸
CuCo ₂ S ₄	Anion-exchange and post-annealing	424	1	⁹
CuCo ₂ S ₄ /Graphene	Hydrothermal	525.4	1	¹⁰
CuCo ₂ S ₄	Two-step hydrothermal approach	~300	0.17 (mA/cm ²)	¹¹
CuCo ₂ O ₄	Hydrothermal	285.5	0.5	¹²
Co ₃ O ₄	Hydrothermal	272.86	0.5	¹³
NiCo ₂ O ₄	Hydrothermal	225	1	¹⁴
CoFe ₂ O ₄	Electrodeposition	768	0.5	¹⁵
CuCo ₂ S ₄	hydrothermal and sulfuration process	373.4	1	⁸
AgBiS ₂	Melt method	175	0.5	¹⁶
CuCo₂S₄(CCS-300)	Solventless approach	475	0.5	This work
NiCo₂S₄(NCS-300)	Solventless approach	1200	0.5	

*AMC-Activated multiporous carbon

Table S2. Comparison chart with previously reported electrocatalyst electrodes.

Catalyst Materials	Synthetic Method	η_{HER} (mV) at 10 mA/cm ²	η_{OER} (mV) at 10 mA/cm ²	Reference
CuCo ₂ S ₄ /NiCo ₂ S ₄	Hydrothermal	206	271	¹⁷
CuCo ₂ S ₄	Hydrothermal	-	310	¹⁸
CuCo ₂ S ₄	Hydrothermal	158	290 (20 mA/cm ²)	¹²
NiCo ₂ O ₄	Hydrothermal	-	346	¹⁹
NiCo ₂ S ₄	Solvothermal	226	-	²⁰
NiCo ₂ S ₄	Hydrothermal followed by sulfidation	-	309	¹⁹
NiCo ₂ O ₄ /NF	Solvothermal	~250	~350	²¹

NiCo_2Se_4	Hydrothermal		270	19
$\text{NiCo}_2\text{S}_4/\text{NF}$	Solvothermal	~200	~330	21
$\text{Ni}_3\text{S}_2/\text{NF}$	Hydrothermal and thermal sulfurization process	271	-	22
$\text{NiCo}_2\text{LDH}/\text{NF}$	Hydrothermal	231	-	22
$\text{NiCo}_2\text{S}_4/\text{NF}$	Hydrothermal	210	260	23
$\text{NiCo}_2\text{S}_4/\text{NF}$	Two-step hydrothermal method	191	<251 (40 mA/cm ²)	24
$\text{NiCo}_2\text{S}_4@\text{N/S-rGO}$	Solvothermal	-	470	25
$\text{NiCo}_2\text{O}_4 \text{ NS/CC}$	Hydrothermal	-	368	26
$\text{NiCo}_2\text{S}_4 \text{ NS/CC}$	Hydrothermal	-	316	26
CuCo_2S_4	Solution-based chemical route	-	395	27
$\text{FeO}@\text{CuCo}_2\text{S}_4$	Hydrothermal	-	240	28
CCS-300	Solventless approach	224	269	
NCS-300	Solventless approach	209	318	This Work

Figure S3. Electrocatalytic activity of commercial platinum for HER (a) and OER (b) processes.

References

- 1 Pu, J. *et al.* Preparation and electrochemical characterization of hollow hexagonal NiCo₂S₄ nanoplates as pseudocapacitor materials. *ACS Sustainable Chemistry & Engineering* **2**, 809-815 (2014).
- 2 Xu, J. *et al.* Novel NiCo₂S₄@ reduced graphene oxide@ carbon nanotube nanocomposites for high performance supercapacitors. *RSC Advances* **6**, 100504-100510 (2016).
- 3 Wu, Z. *et al.* High energy density asymmetric supercapacitors from mesoporous NiCo₂S₄ nanosheets. *Electrochimica Acta* **174**, 238-245 (2015).
- 4 Chen, H., Liu, X. L., Zhang, J. M., Dong, F. & Zhang, Y. X. Rational synthesis of hybrid NiCo₂S₄@ MnO₂ heterostructures for supercapacitor electrodes. *Ceramics International* **42**, 8909-8914 (2016).
- 5 Wang, T. *et al.* Facile preparation and sulfidation analysis for activated multiporous carbon@ NiCo₂S₄ nanostructure with enhanced supercapacitive properties. *Electrochimica Acta* **211**, 627-635 (2016).
- 6 Chen, L., Zuo, Y., Zhang, Y. & Gao, Y. A novel CuCo₂S₄/polyacrylonitrile ink for flexible film supercapacitors. *Materials Letters* **215**, 268-271 (2018).
- 7 Ma, L., Chen, T., Li, S., Gui, P. & Fang, G. A 3D self-supported coralline-like CuCo₂S₄@ NiCo₂S₄ core-shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors. *Nanotechnology* **30**, 255603 (2019).
- 8 Li, H. *et al.* Enhanced electrochemical performance of CuCo₂S₄/carbon nanotubes composite as electrode material for supercapacitors. *Journal of colloid and interface science* **549**, 105-113 (2019).
- 9 Cheng, J. *et al.* Influence of crystallinity of CuCo₂S₄ on its supercapacitive behavior. *Journal of Alloys and Compounds* **825**, 153984 (2020).
- 10 Annamalai, K. & Tao, Y.-s. A hierarchically porous CuCo₂S₄/graphene composite as an electrode material for supercapacitors. *New Carbon Materials* **31**, 336-342 (2016).
- 11 Wang, Q., Liang, X., Yang, D. & Zhang, D. Facile synthesis of novel CuCo₂S₄ nanospheres for coaxial fiber supercapacitors. *RSC advances* **7**, 29933-29937 (2017).
- 12 Zequine, C. *et al.* Effect of solvent for tailoring the nanomorphology of multinary CuCo₂S₄ for overall water splitting and energy storage. *Journal of Alloys and Compounds* **784**, 1-7 (2019).
- 13 Adhikari, H. *et al.* Synthesis and electrochemical performance of hydrothermally synthesized Co₃O₄ nanostructured particles in presence of urea. *Journal of Alloys and Compounds* **708**, 628-638 (2017).
- 14 Ghimire, M. *et al.* Physical Properties and Theoretical Study of NixCo_{3-x}O₄ (0≤ x≤ 1.5) Nanostructures as High-Performance Electrode Materials for Supercapacitors. *Journal of nanoscience and nanotechnology* **19**, 4481-4494 (2019).
- 15 Zhang, C. *et al.* Electrodeposited nanostructured CoFe₂O₄ for overall water splitting and supercapacitor applications. *Catalysts* **9**, 176 (2019).
- 16 Khan, M. D. *et al.* Electrochemical investigation of uncapped AgBiS₂ (schappachite) synthesized using in situ melts of xanthate precursors. *Dalton Transactions* **48**, 3714-3722 (2019).
- 17 Ma, L. *et al.* 3D CuCo₂S₄/NiCo₂S₄ core-shell composites as efficient bifunctional electrocatalyst electrodes for overall water splitting. *Electrochimica Acta* **326**, 135002 (2019).

18 Chauhan, M., Reddy, K. P., Gopinath, C. S. & Deka, S. Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. *ACS Catalysis* **7**, 5871-5879 (2017).

19 Jeghan, S. M. N. & Lee, G. One-dimensional hierarchical nanostructures of NiCo_2O_4 , NiCo_2S_4 and NiCo_2Se_4 with superior electrocatalytic activities toward efficient oxygen evolution reaction. *Nanotechnology* (2020).

20 Sheng, G. *et al.* Flowerlike NiCo_2S_4 hollow sub-microspheres with mesoporous nanoshells support Pd nanoparticles for enhanced hydrogen evolution reaction electrocatalysis in both acidic and alkaline conditions. *ACS applied materials & interfaces* **10**, 22248-22256 (2018).

21 Yin, X. *et al.* 3D hierarchical network NiCo_2S_4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. *International Journal of Hydrogen Energy* **42**, 25267-25276 (2017).

22 Liu, H. *et al.* Heteromorphic $\text{NiCo}_2\text{S}_4/\text{Ni}_3\text{S}_2/\text{Ni}$ foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. *ACS applied materials & interfaces* **10**, 10890-10897 (2018).

23 Sivanantham, A., Ganesan, P. & Shanmugam, S. Hierarchical NiCo_2S_4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. *Advanced Functional Materials* **26**, 4661-4672 (2016).

24 Gong, Y. *et al.* Crossed NiCo_2S_4 Nanowires Supported on Nickel Foam as a Bifunctional Catalyst for Efficient Overall Water Splitting. *ChemistrySelect* **4**, 1180-1187 (2019).

25 Liu, Q., Jin, J. & Zhang, J. $\text{NiCo}_2\text{S}_4@\text{graphene}$ as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. *ACS applied materials & interfaces* **5**, 5002-5008 (2013).

26 Hyun, S. & Shanmugam, S. Hierarchical Nickel–Cobalt Dichalcogenide Nanostructure as an Efficient Electrocatalyst for Oxygen Evolution Reaction and a Zn–Air Battery. *ACS omega* **3**, 8621-8630 (2018).

27 Wiltzout, A. M., Read, C. G., Spencer, E. M. & Schaak, R. E. Solution synthesis of thiospinel CuCo_2S_4 nanoparticles. *Inorganic chemistry* **55**, 221-226 (2016).

28 Ahmed, A. T. A., Pawar, S. M., Inamdar, A. I., Im, H. & Kim, H. Fabrication of $\text{FeO}@\text{CuCo}_2\text{S}_4$ multifunctional electrode for ultrahigh-capacity supercapacitors and efficient oxygen evolution reaction. *International Journal of Energy Research* **44**, 1798-1811 (2020).