Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

- 1 Supplementary Information for
- 2
- 3 Thermodynamically Driven Self-formation of Ag Nanoparticles in Zn-
- 4 embedded Carbon Nanofibers for Efficient Electrochemical CO₂ Reduction
- 5
- 6 Gi-Baek Lee^a, In-Kyoung Ahn^a, Won-Hyo Joo^a, Jae-Chan Lee^a, Ji-Yong Kim^a, Deokgi Hong^a, Hyoung Gyun Kim^a,
- 7 Jusang Lee^a, Miyoung Kim^a, Dae-Hyun Nam^{b,*}, and Young-Chang Joo^{a,c,d,*}
- 8
- 9 a Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- 10 ^bDepartment of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu
- 11 42988, Republic of Korea
- 12 cResearch Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of
- 13 Korea
- 14 ^dAdvanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon 16229, Republic
- 15 of Korea
- 16
- $17\quad$ *Corresponding author.
- 18 E-mail addresses: dhnam@dgist.ac.kr (D. H. Nam), ycjoo@snu.ac.kr (Y. C. Joo).

- 19
- 20~ Fig. S1. Temperature dependence of the composition and structure of the catalyst. FESEM image of AgZn-
- 21~ CNF annealed at (a), (b) 700 °C, (d), (e) 800 °C and (g), (h) 900 °C and TEM image of AgZn-CNF annealed at
- 22 (c) 700 °C, (f) 800 °C and (i) 900 °C.
- 23

 $\,$ Fig. S2. Temperature dependence of the composition of the catalyst. Cross-sectional FESEM image and

26 EDS mapping of AgZn-CNF annealed at (a), (b) 700 °C, (c), (d) 800 °C and (e), (f) 900 °C. Pointed white dots

 $27 ~~{\rm of\ cross-\ sectional\ image\ represent\ Ag\ nanoparticles.}$

Fig. S3. Spectrum and concentration of EDS mapping annealed at (a) 700 °C, (b) 800 °C and (c) 900 °C.

- 33 Fig. S4. (a) cs-STEM image of Zn-CNF with white dots representing atomically dispersed Zn, (b) HAADF-
- $\,$ STEM image of Zn-CNF and EDS analysis of (c) C (d) Zn. $\,$

Fig. S5. (a) first derivative of XANES data to investigate the oxidation states of Zn according to the

 $\,$ materials, (b) EXAFS in k spaces of Zn K-edge.

41~ Fig. S6. XPS analysis (a) deconvolution result of N 1s of w/o metal, Ag-CNF and Zn-CNF (b) deconvolution

- 42~ result of N 1s of w/o metal, Ag-CNF and Zn-CNF.

Fig. S7. XPS deconvolution analysis of AgZn-CNF (a) C 1s (b) O 1s (c) N 1s (d) Ag 3d (e) Zn 2p.

Fig. S8. Faradaic efficiency of electrocatalytic CO_2 reduction of bare CNF.

AgZn-CNF	C (at%)	Ag (at%)	Zn (at%)	O (at%)	Total (at%)
700 °C	85.61	1.12	2.68	10.59	100
800 °C	94.38	0.71	2.63	2.28	100
900 °C	97.77	0	0.28	1.95	100

Table S1. Temperature dependence of atomic composition of AgZn-CNF based on FESEM EDS.

Sample	C (at%)	N (at%)	Ag (at%)	Zn (at%)	O (at%)	Total(at%)
Ag-CNF	87.1	9.7	0.7	0	2.6	100.1
Zn-CNF	86.4	9.3	0	0.7	3.5	99.9
AgZn-CNF	86.9	9.3	0.4	0.9	2.6	100.1

59 Ta	ole S2. XPS	analysis	for ver	ification	of chemica	I composition.
-------	-------------	----------	---------	-----------	------------	----------------