Electronic Supplementary Information

Facile fabrication and low temperature bonding of Cu@Sn-Bi core-shell particles for conductive paste

Zhehan Yang, Yi Pan, Hengyu Zhao, Xiangmin Yang, Ying Liang, Zhen Zhang* and Bin Fang*

Institute of Nuclear Technology and Application, School of Science, East China University of Science and Technology, Shanghai 200237, P. R. China.

E-mail: zhangzhen@ecust.edu.cn; binfang@ecust.edu.cn

Sample	The mass ratio of Sn to Bi	The mass ratio of Cu to Sn-Bi	Stirring speed
1	48:52 (Self-made, 3-10 nm)	1:5	300 rpm
2	48:52 (Self-made, 3-10 nm)	2:5	300 rpm
3	48:52 (Self-made, 3-10 nm)	4:5	90 rpm
4	48:52 (Self-made, 3-10 nm)	4:5	180 rpm
5	48:52 (Self-made, 3-10 nm)	4:5	240 rpm
6	48:52 (Self-made, 3-10 nm)	4:5	300 rpm
7	42:58 (purchased, 10-25 μm)	4:5	300 rpm
8	48:52 (Self-made, 3-10 nm)	6:5	300 rpm

Table S1 The experimental conditions of Cu@Sn-Bi particles

Ripening condition: 160 °C, 30 min and 180 °C, 10 min.

Fig. S1 DSC result of Sn and Bi NPs mixtures.

Fig. S2 Digital photograph of as-synthesized Cu@Sn-Bi at the stirring speed of 90 rpm (Sample

Fig. S3 Digital photograph of as-synthesized Cu@Sn-Bi using the purchased Sn-Bi alloy particles $(10 \le d \le 25 \ \mu m)$ as the precursor (Sample 7).

Table S2	The volu	me resistivity	of printed	circuits	using	different	Cu@Sn-Bi	paste	solidified	at
different t	temperatur	re								

Volume resistivitySolidifying temperature $(\mu\Omega \cdot cm)$ (°C)Fillers	160 °C	180 °C	200 °C	220 °C	240 °C
Cu@Sn-Bi-0.2	over testing range	1.03×10 ⁷	6.52×10 ⁶	8.76×10 ⁶	over testing range
Cu@Sn-Bi-0.4	2.98×10 ⁷	76300	73400	85600	6.46×10 ⁶
Cu@Sn-Bi-0.8	2.34×10 ⁸	550	481	556	1.80×10 ⁷
Cu@Sn-Bi-1.2		01	ver testing ran	ge	

Fig. S4 The cross section SEM image of printed circuit (Cu@Sn-Bi-0.8) solidified at 180°C. The SEM image taken with 3.0 kV accelerating voltage.

Ref	Filler	Size	Content (%)	Curing temperature (°C)	Volume resistivity $(\mu\Omega \cdot cm)$
1	Cu	$45 \pm 5 \text{ nm}$	100	400	3.32×10 ¹⁰
2	Cu and Cu ₂ O	< 10 nm	67	300	480
3	Cu@Ag	11.7 nm	70	chemical sintering	300
4	Cu	20-110 nm	100	200	1100
				300	86
5	Cu	10-20 nm	100	200	730
6	Cu	37 nm	100	200	62
This work	Cu@Sn-Bi	1.82 μm	59	200	481

Table S3 The volume resistivity of Cu based conductive inks

 J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong and S. H. Ko, ACS Appl. Mater. Interfaces, 2016, 8, 11575-11582.

[2] T. Y. Dong, H. H. Wu, C. Huang, J. M. Song, I. G. Chen and T. H. Kao, Appl. Surf. Sci., 2009, 255, 3891-3896.

[3] X. F. Dai, W. Xu, T. Zhang, H. B. Shi and T. Wang, Chem. Eng. J., 2019, 364, 310-319.

[4] J. F. Yan, G. S. Zou, A. M. Hu and Y. N. Zhou, J. Mater. Chem., 2011, 21, 15981-15986.

[5] P. Pulkkinen, J. Shan, K. Leppanen, A. Kansakoski, A. Laiho, M. Jarn and H. Tenhu, ACS Appl. Mater. Interfaces, 2009, 1, 519-525.

[6] Y. S. Goo, Y. I. Lee, N. Kim, K. J. Lee, B. Y. Yoo, S. J. Hong, J. D. Kim, Y. H. Choa, Surf. Coat. Tech., 2010, 205, S369-S372.

Fig. S5 The variation of volume resistivity after ageing for 6 h at 190°C. (Cu@Sn-Bi-0.8 paste sintered at 200 °C)

Fig. S6 (a) The digital photograph of circuits on the PI film using Cu@Sn-Bi-0.8 paste solidified at 200°C; (b) the corresponding circuits after 100 cycles of repetitive strain around the cylinder.