Supporting information

A two-step Chemical Vapor Deposition process for the growth of continuous vertical heterostructure WSe₂/h-BN and its optical properties

M. Alahmadi, ^{ab} F. Mahvash, ^{ac} T. Szkopek^c and M. Siaj ^a*

- ^a NanoQAM, Quebec Center for Functional Materials, Department of Chemistry, University of Quebec in Montreal, Succ CentreVille, CP8888, Montreal, Quebec H3C 3P8, Canada.
- ^b Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 41321, Saudi Arabia
- ^cDepartment of Electrical and Computer Engineering, McGill University, Montréal, H3A 2A7, Quebec, Canada

E-mail: siaj.mohamed@uqam.ca

Figure S1. a) Large scale growth of hBN on quartz and SiO₂. b) Optical images of hBN on top of SiO₂/Si. c) energy dispersive X-ray (EDX) elemental mapping of Bron (B) and Nitrogen (N). d) SEM image of hBN on substrate.

TEM and SAED data:

Figure S2. a) TEM image of a suspended hBN monolayer edge over Cu foil. b) The selected area electron diffraction (SAED) pattern with the expected hexagonal lattice structure of hBN monolayer.

RAMAN mapping hBN/SiO₂:

Figure S3. a) Peak intensity map of E¹_{2g} (~1369 cm1) Raman mode of hBN film grown on top of SiO₂/Si substrate.

Figure 4S: XPS investigation of the WSe₂/hBN heterostructure. The XPS spectroscopic analysis of the WSe₂/hBN heterostructure shows (a) B 1s, (b) N 1s (c) W4f, and (d) Se 1s.