Supplementary Information

A Highly Selective "Turn-on" Water-soluble Fluorescent Sensor for Gallium Ion Detection

Pengfei Wang,^a Fanda Meng,^b Hao Su,^a Lijie Liu,^a Maroof Ahmad Khan,^a Hui Li^{*a}

^a Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
^b School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, P. R. China.

* Correspondence:

Hui Li

E-mail: <u>lihui@bit.edu.cn</u>

Table of Contents:

Figure S1. ¹H NMR spectrum of **1**;

Figure S2. ¹³C NMR spectrum of **1**;

Figure S3. Positive-ion ESI-mass spectrum of 1;

Figure S4. Solution and Solid State Fluorescence spectrum of 1;

Figure S5. Absorption spectrum of 1 and 1-Ga³⁺;

Figure S6. Theoretical calculated UV-vis absorption spectrum of 1;

Figure S7. Theoretical calculated UV-vis absorption spectrum of 1-Ga³⁺;

Figure S8. The calibration curve of **1** versus Ga³⁺ concentrations;

Figure S9. Benesi-Hildebrand plot of 1 and Ga³⁺;

Figure S10. Fluorescence spectrum of 1 and 1-Ga³⁺;

Figure S11. Absorption spectra of **1** upon the addition of Al³⁺(0- 30 eq.);

Figure S12. Time-dependent fluorescence response of 1 in the presence of Ga³⁺ ions;

Figure S13. Effect of pH on the fluorescence intensities of 1 and the 1-Ga³⁺ complex;

Figure S14. Up (a) and side view (b) of the optimized molecular structure of 1;

Figure S15. Up (a) and side view (b) of the optimized molecular structure of **1-Ga³⁺**;

Figure S16. PXRD patterns of 1;

Table S1. Bond Lengths for 1;

Table S2 Bond Angles for 1;

Table S3. Performance comparison of recently published sensors;

Table S4. Primary orbitals which contribute to the calculated transitions of 1;

Table S5. Primary orbitals which contribute to the calculated transitions of **1-Ga³⁺**;

Table S6. TD-DFT calculated electronic transition configurations for 1 and 1-Ga³⁺ along with

their corresponding excitation energies and oscillator strengths;

References.

Figure S1. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of 1.

Figure S2. ¹³C NMR (176 MHz, DMSO-*d*₆) spectrum of 1.

Figure S3. Positive-ion ESI-mass spectrum of 1.

Figure S4. Solution and Solid State Fluorescence spectrum of 1.

Figure S5. Absorption spectrum of 1 (10 μ M) and 1-Ga³⁺(10 μ M) in 0.1% DMSO/bis-tris buffer solution.

Figure S6. Theoretical calculated UV-vis absorption spectrum of 1.

Figure S7. Theoretical calculated UV-vis absorption spectrum of 1-Ga³⁺.

Figure S8. The calibration curve of 1 versus Ga^{3+} concentrations.

Figure S9. Benesi-Hildebrand plot of 1 and Ga³⁺.

Figure S10. Fluorescence spectrum of 1 (1 μ M) and 1-Ga³⁺(1 μ M) in 0.1% DMSO/bis-tris buffer solution.

Figure S11. Absorption spectra of **1** (10 μ M) upon the addition of Al³⁺(0- 30 eq.) in 0.1% DMSO/bis-tris buffer solution;

Figure S12. Time-dependent fluorescence response of probe 1 in the presence of Ga^{3+} ions.

Figure S13. Effect of pH on the fluorescence intensities of 1 and the $1-Ga^{3+}$ complex.

Figure S14. Up view (a) and side view (b) of the optimized molecular structure of sensor 1.

Figure S15. Up view (a) and side view (b) of the optimized molecular structure of 1-Ga³⁺.

Figure S16. PXRD patterns of 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C1	1.649(5)	C6	C7	1.441(5)
S1	C4	1.683(4)	C7	C8	1.390(5)
01	C5	1.223(4)	C7	C11	1.404(5)
02	C11	1.358(4)	C8	C9	1.374(6)
N1	N2	1.369(4)	C9	C10	1.379(6)
N1	C5	1.354(4)	C10	C12	1.381(5)
N2	C6	1.282(4)	C11	C12	1.411(5)
C1	C2	1.338(6)	C12	C13	1.532(6)
C2	C3	1.426(6)	C13	C14	1.537(6)
C3	C4	1.458(5)	C13	C15	1.544(5)
C4	C5	1.475(5)	C13	C16	1.532(5)

 Table S1. Bond Lengths for 1.

Table S2 Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	
C1	S1	C4	92.3(2)	С9	C8	C7	120.3(4)	
C5	N1	N2	119.5(3)	C8	С9	C10	119.5(4)	
C6	N2	N1	117.0(3)	С9	C10	C12	123.6(4)	
C2	C1	S1	113.9(3)	02	C11	C7	120.0(3)	
C1	C2	C3	114.9(4)	O2	C11	C12	118.3(3)	

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C3	C4	106.2(3)	C7	C11	C12	121.7(3)
C3	C4	S1	112.6(2)	C10	C12	C11	116.0(4)
C3	C4	C5	128.6(3)	C10	C12	C13	122.3(3)
C5	C4	S 1	118.7(3)	C11	C12	C13	121.8(3)
01	C5	N1	123.2(3)	C12	C13	C14	111.0(3)
01	C5	C4	122.3(3)	C12	C13	C15	109.7(3)
N1	C5	C4	114.5(3)	C12	C13	C16	111.8(3)
N2	C6	C7	122.1(3)	C14	C13	C15	109.5(4)
C8	C7	C6	118.5(3)	C16	C13	C14	107.4(3)
C8	C7	C11	119.0(3)	C16	C13	C15	107.4(3)
C11	C7	C6	122.5(3)				

 Table S3. Performance comparison of recently published sensors.

Ref.	Crystal	Media	Detection Ions	LOD(M)	Applications
[1]	NA	DMSO/MeOH	Ga^{3+} , Al^{3+} , and In^{3+}	1.4×10 ⁻⁵	NA
[2]	NA	EtOH/H ₂ O (98:2)	Hcy and Ga ³⁺	2.4×10 ⁻⁶	NA
[3]	NA	DMSO/H ₂ O/ EtOH	Al ³⁺ , and Ga ³⁺	5×10-8	NA
[4]	NA	МеОН	Al ³⁺ , and Ga ³⁺	1×10-7	NA
[5]	NA	DMSO/H2O (5:1)	Ga ³⁺ , Al ³⁺ , and In ³⁺	5.4×10 ⁻⁸	Bioimaging
[6]	NA	MeCN	Ga ³⁺	5.5×10 ⁻⁷	Bioimaging
This work	YES	H ₂ O	Ga ³⁺	5.8×10 ⁻⁸	Test strips Water Samples

Table S4. Primary orbitals which contribute to the calculated transitions of 1 (iso = 0.03).

				×.		1. A A A A A A A A A A A A A A A A A A A	
LUMO+1	-0.96 eV	LUMO	-1.78 eV	номо	-5.69 eV	HOMO-1	-6.24 eV

LUMO+1	1.24 eV	LUMO	1.10 eV	номо	-2.26 eV	HOMO-1	-2.29 eV

Table S5. Primary orbitals which contribute to the calculated transitions of $1-Ga^{3+}$ (iso = 0.03).

Table S6. TD-DFT calculated electronic transition configurations for 1 and 1-Ga³⁺ along with their corresponding

	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	S1	HOMO → LUMO (98%)	358.0 (3.46)	0.2956
1	S2	HOMO-1 \rightarrow LUMO (92%)	340.6 (3.64)	0.2812
	S3	HOMO \rightarrow LUMO+1 (86%)	313.6 (4.95)	0.1538
	61	HOMO-1 → LUMO+1 (10%)	424 4 (2.97)	0.0837
	51	HOMO → LUMO (89%)	431.4 (2.07)	
1+Co3t	60	HOMO-1 → LUMO (83%)	429 2 (2 90)	0.0544
ITGa	52	HOMO \rightarrow LUMO+1 (16%)	420.3 (2.09)	0.0544
	62	HOMO-1 → LUMO (16%)	200 0 (2 11)	0.4384
	55	HOMO → LUMO+1 (82%)	390.9 (3.11)	

excitation energies and oscillator strengths.

Reference

[1] H. J. Jang, J. H. Kang, D. Yun and C. Kim, Photochem. Photobiol. Sci., 2018, 17, 1247-1255;

[2] Y. W. Wang, S. B. Liu, W. J. Ling, Y. Peng, Chem. Commun., 2016, 52, 827-830;

[3] J. Kimura, H. Yamada, H Ogura, T. Yajima and T. Fukushima, Anal. Chim. Acta, 2009, 635, 207-213;

[4] J. Y. Noh, S. Kim, I. H. Hwang, G. Y. Lee, J. S. Kang, H. Kim, J. Min, S. Park, C. Kim and J. Kim, *Dyes Pigm.*, **2013**, 99, 1016-1021;

[5] X. He, W. Xiong, C. Xu, J. Fan, Y. Qian, J. Wen and J. Shen, Dyes Pigm., 2020, 174, 108059;

[6] L. Xiao, S. Sun, Z. Pei, Y. Pei, Y. Pang and Y. Xu, Biosens. Bioelectron., 2015, 65, 166-170.