Supplementary material Structure–property relations in linear viscoelasticity of supramolecular hydrogels

Aleksey D. Drozdov^{*} and Jesper deClaville Christiansen Department of Materials and Production Aalborg University Fibigerstraede 16, Aalborg 9220, Denmark

^{*}E-mail: aleksey@m-tech.aau.dk

S-1 Nomenclature of symbols

- a coefficient in Eq. (23)
- f probability density
- f_0 pre-factor in Eq. (9)
- $G^{\prime},\,G^{\prime\prime}$ storage and loss moduli
- $G_{\rm r}$ relaxation modulus
- $k_{\rm B}$ the Boltzmann constant
- K coefficient in Eq. (22)
- n number of active chains (per unit volume)
- N total number of active chains
- P number of chains merging with a network (per unit volume and unit time)
- t time
- T_0 initial temperature
- u activation energy
- v dimensionless activation energy
- w strain energy of an active chain
- W strain energy density of a network
- γ coefficient in Eq. (22)
- $\Gamma-{\rm rate}$ of dissociation of bonds
- Γ_0 attempt rate
- ϵ shear strain

 ϵ^* – relative shear strain

- μ elastic modulus of a network
- $\bar{\mu}$ rigidity of a chain

 σ – shear stress

 Σ – standard deviation of the quasi-Gaussian distribution

 $\tau, \tau_0, \tau_1, \tau_2$ – instants of time

 ω – angular frequency of oscillations.

S-2 Protein hydrogels (Section 3.1)

The protein gels (Sun et al. [1]) consist of two proteins, CCE-(GB₁)₄-CCE and CCK-(GB₁)₅-CCK-(GB₁)₅-CCK, phycally cross-linked by coiled-coil complexes between CCK and CCE blocks (complementary leucine zipper sequences) (Lv et al. [2]). Recombinant protein GB₁ comprises 56 residues of Immunoglobulin G Streptococcus (Gronenborn et al. [3]). Synthetic polypeptides CCK and CCE are formed by heptide repeated units (abcdefg)₅ with hydrophobic residuals in *a* and *d* positions, charged residuals in *e* and *g* positions, and hydrophilic residuals in *b*, *c* and *f* positions. The sequence of amino acids in polypeptides CCK and CCE reads (Sun et al. [1])

Peptide		g	abcdefg	abcdefg	abcdefg	absdefg	abcdef	
CCK	LG	Κ	VSALKEK	VSALKEE	VSANKEK	VSALKEK	VSALKE	LG
CCE	LG	Е	VSALEKE	VSALEKK	VSANEKE	VSALEKE	VSALEK	LG

Here A = alanine, E = glutamic acid, G = glycine, K = lysine, L = leucine, N = asparagine, S = serine, V = valine.

m -11, C 1	NT. 4 . • 1		C				4 4		7
1able 5-1:	Material	parameters	tor	protein	gera	t various	temperatures	- 1	
		P		F	0			_	-

T °C	μ k Pa	$\gamma~{\rm s}^{-1}$	Σ	K
20	0.788	1.1	1.05	0.036
37	0.785	9.5	1.18	0.017

References

- [1] W. Sun, T. Duan, Y. Cao and H. Li, *Biomacromolecules*, 2019, **20**, 4199–4207.
- [2] S. Lv, Y. Cao and H. Li, Langmuir, 2012, 28, 2269–2274.
- [3] A.M. Gronenborn, D.R. Filpula, N.Z. Essig, A. Achari, M. Whitlow, P.T. Wingfield and G.M. Clore, *Science*, 1991, 253, 657–661.

S-3 Supplementary figures

Figure S-1: Parameters μ , γ and Σ versus concentration of proteins ϕ . Circles: treatment of observations (Sun et al., 2019) on protein gels with equal molar fractions of CKK and CCE peptides. Solid lines: results of simulation.

Figure S-2: Parameters μ , γ and K versus molar fraction of CCK peptides r. Circles: treatment of observations (Sun et al., 2019) on protein gels with mass fraction of proteins $\phi = 0.07$. Solid lines: results of simulation.

Figure S-3: Parameters K, γ and Σ versus molar fraction θ of NaCl in PBS solution. Circles: treatment of observations (Sun et al., 2019) on protein gels with mass fraction of proteins $\phi = 0.07$ and equal molar fractions of CCK and CCE. Solid lines: results of simulation.

Figure S-4: Parameters μ , γ and Σ versus concentration ϕ of histidine-functionalized PEG chains in buffered solutions. Circles: treatment of observations (Fullenkamp et al., 2013) on histidine-functionalized PEG gels cross-linked with Ni²⁺ ions. Solid lines: results of simulation.

Figure S-5: Parameters μ , γ and Σ versus concentration ϕ of phenanthroline-functionalized PEG chains in buffered solutions. Circles: treatment of observations (Ahmadi and Seiffert, 2021) on phenanthroline-functionalized PEG gels cross-linked with Co²⁺ ions. Solid lines: results of simulation.

Figure S-6: Parameters μ , γ and Σ versus concentration ϕ of MPC chains functionalized with MAABO and DMA monomers. Circles: treatment of observations (Chen et al., 2018) on MPC gels cross-linked by benzoxaborole-catechol complexes. Solid lines: results of simulation.

Figure S-7: Parameters μ , γ and Σ versus ratio r of molar fractions of AAc and AAm monomers. Circles: treatment of observations (Zou et al., 2017) on P(AAm-AAc) gels cross-linked with Fe³⁺ ions. Solid lines: results of simulation.

Figure S-8: Storage modulus G' and loss modulus G'' versus frequency ω . Symbols: experimental data (Yesilyurt et al., 2017) on PEG gels cross-linked by phenylboronic acid-diol (PBA-GL and APBA-GL) complexation with mass fractions of PEG-APBA macromers r = 0.25 and 0.75. Solid lines: results of simulation.

Figure S-9: Parameters μ , γ and Σ versus mass fraction r of PEG-APBA macromers. Circles: treatment of observations (Yesilyurt et al., 2017) on PEG gels cross-linked by phenylboronic acid-diol (PBA-GL and APBA-GL) complexation. Solid lines: results of simulation.

Figure S-10: Parameters μ , Σ (A) and γ , K (B) versus temperature T. Circles: treatment of observations (Fullenkamp et al., 2013) on histidine-modified PEG gels cross-linked with Ni²⁺ ions. Solid lines: results of simulation.

Figure S-11: Storage modulus G' and loss modulus G'' versus frequency ω . Symbols: experimental data (Zou et al., 2017) on P(AAm-AAc) gel cross-linked with Fe³⁺ ions at various temperatures T (A – T = 40, B – T = 50, C – T = 60, D – T = 70 °C). Solid lines: results of simulation.

Figure S-12: Parameters μ , Σ (A) and γ , K (B) versus temperature T. Circles: treatment of observations (Zou et al., 2017) on P(AAm-AAc) gel cross-linked with Fe³⁺ ions. Solid lines: results of simulation.

Figure S-13: Storage modulus G' and loss modulus G'' versus frequency ω . Symbols: experimental data (Parada and Zhao, 2018) on PEG gel cross-linked by phenylboronic acid-diol (FPBA-GL) complexation at various temperatures T (A – T = 10, B – T = 15, C – T = 25, D – T = 35 °C). Solid lines: results of simulation.

Figure S-14: Parameters μ , Σ (A) and γ , K (B) versus temperature T. Circles: treatment of observations (Parada and Zhao, 2018) on PEG gel cross-linked by phenylboronic acid–diol (FPBA-GL) complexation. Solid lines: results of simulation.

Figure S-15: Storage modulus G' and loss modulus G'' versus frequency ω . Symbols: experimental data (Parada and Zhao, 2018) on PEG gel cross-linked by phenylboronic acid–diol (FPBA-GL) complexation at various pH (A – pH = 7.2, B – pH = 7.7). Solid lines: results of simulation.

Figure S-16: Parameters μ , Σ (A) and γ , K (B) versus pH. Circles: treatment of observations (Parada and Zhao, 2018) on PEG gel cross-linked by phenylboronic acid–diol (FPBA-GL) complexation. Solid lines: results of simulation.

Figure S-17: Parameters μ , Σ (A) and γ , K (B) versus pH. Circles: treatment of observations (Marco-Dufort et al., 2020) on PEG gels cross-linked by phenylboronic acid-diol (PBA-GL) complexation. Solid lines: results of simulation.

Figure S-18: Parameters μ , Σ (A) and γ , K (B) versus pH. Circles: treatment of observations (Yesilyurt et al., 2016) on PEG gel cross-linked by phenylboronic acid-diol (APBA-GL) complexation at temperature T = 37 °C. Solid lines: results of simulation.

Figure S-19: Parameters μ , Σ (A) and γ , K (B) versus pH. Circles: treatment of observations (Menyo et al., 2013) on HOPO-functionalized PEG gel cross-linked with Fe³⁺ ions. Solid lines: results of simulation.

Figure S-20: Parameters μ , Σ (A) and γ , K (B) versus pH. Circles: treatment of observations (Barrett et al., 2013) on on catechol-functionalized PEG gel cross-linked with Fe³⁺ ions. Solid lines: results of simulation.