## Supporting Information for

## Surface acidity of tin dioxide nanomaterials revealed with $^{\rm 31}{\rm P}$ solid-state NMR spectroscopy

## and DFT calculations

Wenjing Zhang,<sup>a,†</sup> Zhiye Lin,<sup>a,†</sup> Hanxiao Li,<sup>b,†</sup> Fang Wang,<sup>a</sup> Yujie Wen,<sup>a</sup> Meng Xu,<sup>a</sup> Yang Wang,<sup>a</sup> Xiaokang

Ke,<sup>a</sup> Xifeng Xia,<sup>c</sup> Junchao Chen,<sup>a,\*</sup> Luming Peng<sup>a,\*</sup>

<sup>a</sup> Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

<sup>b</sup> Chinesisch-Deutsche Technische Fakultät, Qingdao University of Science and Technology, 99 Songling Road,

Qingdao 266061, China.

<sup>c</sup> Analysis and Testing Center, Nanjing University of Science and Technology, Nanjing 210094, China.

\* E-mails: cjcnuaa@163.com (Junchao Chen) and luming@nju.edu.cn (Luming Peng)

<sup>+</sup> These authors contributed equally.



Fig S1. Initial structure of SnO<sub>2</sub> 6 layers-(001), 4 layers-(101), 4 layers-(110) and 7 layers-(100) surface.

Table S1. The amounts of impurities that may be present on  $SnO_2$  nanosheets and nanoshuttles.

| Sample       | Cl / wt % | N / wt % | C / wt % |
|--------------|-----------|----------|----------|
| Nanosheets   | < 0.1     | < 0.1    | < 0.1    |
| Nanoshuttles | < 0.1     | < 0.1    | < 0.1    |



Fig S2. Interpolation method for characterizing the content of hydrogen atoms on SnO<sub>2</sub> nanomaterials from quantitative <sup>1</sup>H NMR, utilizing adamantane (Ada.) as a reference compound. (a) The integrated intensity of <sup>1</sup>H signals as a function from the mass of adamantine packed in the rotor. The integral range is set to 20 ~ -15 ppm. The number of scans acquired was 256 with a spinning speed of 10 kHz. A saturated recycle delay of 32 s was used to guarantee quantitative measurement. The linear correlation between peak intensity (y / a.u.) of the spectra and the mass of adamantine (x / mg) is  $y = 1.1 \times 10^9 x - 8.1 \times 10^8$ . (b) <sup>1</sup>H NMR spectra of Ada., SnO<sub>2</sub> nanosheets, and SnO<sub>2</sub> nanoshuttles. The same number of scans acquired and spinning speed were used with a saturated recycle delay of 8 s.

Table S2. The concentrations of surface hydrogen of SnO<sub>2</sub> nanosheets and nanoshuttles, respectively.<sup>a</sup>

| Sample       | Mass<br>/ mg | Intensity of           | Total Amount           | Concentration                | Coverage                 |
|--------------|--------------|------------------------|------------------------|------------------------------|--------------------------|
|              |              | 256 Scans              | of Hydrogen            | of Hydrogen <sup>b</sup>     | of Hydrogen <sup>c</sup> |
|              |              | / a.u.                 | / mol·g⁻¹              | / surface unit <sup>-1</sup> | / %                      |
| Adamantane   | 69.2         | 7.3 × 10 <sup>10</sup> | 1.2 × 10 <sup>-1</sup> | /                            | /                        |
| Nanosheets   | 57.4         | 1.9 × 10 <sup>7</sup>  | 2.1 × 10 <sup>-6</sup> | 0.23                         | 1.84                     |
| Nanoshuttles | 82.7         | 3.5 × 10 <sup>7</sup>  | 3.8 × 10⁻ <sup>6</sup> | 0.18                         | 1.44                     |

<sup>a</sup> The concentrations of hydrogen are quantified with the interpolation method employing adamantane as a reference material;

<sup>b</sup> Concentration of Hydrogen (surface unit<sup>-1</sup>) = Total Amount of Hydrogen (mol·g<sup>-1</sup>) × N<sub>A</sub> / S<sub>BET</sub> (m<sup>2</sup>·g<sup>-1</sup>) × S<sub>Unit</sub> (m<sup>2</sup>), N<sub>A</sub> represents the Avogadro constant (6.02 × 10<sup>23</sup> mol<sup>-1</sup>), S<sub>BET</sub> is the sample surface area from BET (70.4 m<sup>2</sup>·g<sup>-1</sup> for nanosheets and 117.0 m<sup>2</sup>·g<sup>-1</sup> for nanoshuttles), and S<sub>Unit</sub> denotes the surface area of one surface unit (78.1 Å<sup>2</sup>, the average value of 4 low-index surfaces).

<sup>c</sup> Coverage of Hydrogen (%) = Concentration of Hydrogen (surface unit<sup>-1</sup>) / 12.5 × 100 %, the constant (12.5) is an average number of surface binding sites on 4 low-index surfaces.



Fig S3. NLDFT pore-size distribution plots of  $SnO_2$  nanosheets and nanoshuttles.



Fig S4. Electron density difference in the acid sites of four facets ((001), (101), (110) and (100)) absorbed with TMP. Yellow area, electron acceptor; Blue area, electron donor.

Table S3. The chemical shifts ( $\delta_{iso}$ s), peak widths and integrated areas of deconvoluted <sup>31</sup>P NMR peaks.

| Sample       | Facet                      | (001) | (101) | (110) | (001) |
|--------------|----------------------------|-------|-------|-------|-------|
| Nanosheets   | $\delta_{	ext{iso}}$ / ppm | -6.0  | -14.1 | -22.5 | -29.2 |
|              | Width / Hz                 | 1250  | 1450  | 1400  | 720   |
|              | Area / %                   | 12.3  | 38.8  | 44.2  | 4.7   |
| Nanoshuttles | $\delta_{	ext{iso}}$ / ppm | -6.0  | -14.3 | -23.2 | -29.0 |
|              | Width / Hz                 | 1200  | 1500  | 1410  | 700   |
|              | Area / %                   | 2.8   | 29.4  | 60.1  | 10.5  |