Polymer encapsulated clinical ICG nanoparticles for enhanced

photothermal therapy and NIR fluorescence imaging in cervical

cancer

Shuang Chen,^a Lijun Zhu,^b Zhong Du,^a Rong Ma,^a Ting Yan,^b Gulinigaer Alimu,^b Xueliang Zhang,^b

Nuernisha Alifu*,^b and Cailing Ma*,^a

^aState Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University. Urumqi 830054, China. E-mail: hymcl@sina.com

^bState Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China. E-mail: nens_xjmu@126.com

Supplementary information

Fig. S1 (a) Transmission electron microscope (TEM) images of clinical ICG nanoparticles (Scale bar: 200nm)

and (b) ICG@PSMA nanoparticles (Scale bar: 500nm).

Fig. S2 DLS size of ICG@PSMA NPs for 9 consecutive days.

Fig. S3 Thermal images of ICG@PSMA nanoparticles in aqueous dispersion (200 μ g mL⁻¹) under different

power densities of 808 nm excitation.

Fig. S4 Heating/cooling curves of free ICG in aqueous dispersion (200 μ g mL⁻¹, 808 nm excitation, 640 mW cm⁻²) for 5 repeated irradiation cycles.

Fig. S5 Linear time data versus $-In\vartheta$ obtained from the cooling period of ICG@PSMA NPs in aqueous dispersion.

Fig. S6 Linear time data versus $-In\vartheta$ obtained from the cooling period of free ICG in aqueous dispersion.

Fig. S7 NIR fluorescence microscopic images of HeLa cells incubated with PBS, free ICG, and ICG@PSMA nanoparticles under CLSM. Images were obtained via 10 × objectvie (Scale bar: 100 μ m), 20 × objective (Scale bar: 30 μ m). λ_{em} = 800-1000 nm, λ_{ex} =480 nm (DAPI); λ_{ex} = 640 nm (ICG and ICG@PSMA nanoparticles). (a) and (b) HeLa cells treated with DMEM, (c) and (d) HeLa cells incubated with ICG (50 μ g mL⁻¹), (e) and (f) ICG@PSMA nanoparticles (50 μ g mL⁻¹), (g) and (h) ICG (100 μ g mL⁻¹), (i) and (j) ICG@PSMA nanoparticles (100 μ g mL⁻¹).

Fig. S8 Live/dead ratios of HeLa cells with different treatments: (1) control, (2) ICG@PSMA nanoparticles (50 μ g mL⁻¹), (3) Laser only, (4) ICG@PSMA nanoparticles (50 μ g mL⁻¹) and laser (808 nm laser irradiation at a power density of 900 mW cm⁻² for 10 minutes).

Fig. S9 The hemolytic effect of ICG@PSMA NPs in all formulations at different concentrations (6.25, 12.5, 25, 50, and 100 μ g/mL)

Fig. S10 Sections of major organ slices from mice.