Supporting Information

Tubular g-C₃N₄/Carbon Framework for High-efficiency

Photocatalytic Degradation of Methylene Blue

Hai-cheng Li¹, Lin-lin Zang², Feng-tong Shen¹, Li-bin Wang¹, Li-guo Sun^{*,1}, Fu-long Yuan^{*,1} ¹ School of Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, P. R. China. ² State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China. *Corresponding Authors: E-mail: sunliguo1975@163.com (L. Sun); yuanfulong@hlju.edu.cn

Experiment

Degradation efficiency formula:

The degradation efficiency of methylene blue is calculated by the following formula:

$$Efficiency = \frac{C_0 - C}{C_0} * 100\%$$

 C_0 is the concentration of the initial methylene blue solution, and C is the concentration of the methylene blue solution tested with a spectrophotometer.

Results and discussion

Fig. S1. Schematic diagram of the static photocatalysis process in a water tank.

Fig. S2 Schematic diagram of the dynamic photocatalysis process.

Fig. S3 TEM images of CNC-12.

Fig. S4 SEM images of CNC-10 (a), and CNC-14 (b).

Fig. S5 Radical species capture experiment.

Fig. S6 1H-NMR (400 MHz, D_2O) δ 4.696 (m, J = 4.696, 2H)