The photophysical properties of naphthalene bridged disilanes

Vipin B. Kumar^{a,b}, Cassandra L. Fleming,^c Sai Shruthi Murali,^d Paul Hume,^{b,d} Nathaniel J. L. K. Davis,^{b,d} Tilo Söhnel^{a,b} and Erin M. Leitao^{*a,b}

^a School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand

^b The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand

^c Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.

^d School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 6006140, New Zealand

Contents:

(i) NMR spectra

- (ii) XRD data and calculated LUMOs
- (iii) UV-Vis absorption and fluorescence spectra
- (iv) Cyclic Voltammetry measurements

(i) NMR spectra

Figure S2 ¹³C{¹H} NMR spectrum of 1a, in CDCl₃

Figure S4 ¹H NMR spectrum of **2a**, in CDCl₃ (# grease)

Figure S6 ²⁹Si{¹H} NMR spectrum of **2a**, in CDCl₃

Figure S7 ²⁹Si{¹H}-HSQC 2D-NMR spectrum of 2a, in CDCl₃

Figure S8 ¹H NMR spectrum of **1b**, in CDCl₃ (**n*-hexane, # grease).

Figure S9 $^{13}C{^{1}H}$ NMR spectrum of 1b, in CDCl₃

Figure S10 ²⁹Si{¹H} NMR spectrum of **1b**, in CDCl₃ (# grease).

Figure S11 ¹H NMR spectrum of **2b**, in CDCl₃ (*diethyl ether and acetone, and # grease)

Figure S12 ¹³C{¹H} NMR spectrum of 2b, in CDCl₃

Figure S13 ²⁹Si{¹H} NMR spectrum of **2b**, in CDCl₃ (# grease). Two peaks in the spectrum correspond to the two isomeric products of **2b**

Figure S14 ²⁹Si{¹H}-HMBC NMR spectrum of **2b**, in CDCl₃.

Figure S15 GC-MS spectra of 2b confirming the presence of two isomers.

(ii) XRD data and calculated LUMOs

Tuble Dif City Stand Stapping data for Compounds in and its .	Table S1.	Crystallographic	data for com	pounds 1a and	1b .
--	-----------	------------------	--------------	----------------------	-------------

Compound	1a	1b	
CCDC deposition number	2060937	2060939	
Chemical Formula	$C_{24}H_{24}Si_2$	$C_{24}H_{22}Si_2$	
$M/g \text{ mol}^{-1}$	368.63	366.59	
Temperature /K	174(30)	100(1)	
Crystal system	Monoclinic	Orthorhombic	
Space group	$P2_{1}/n$	$P2_{1}2_{1}2_{1}$	
a/Å	9.2512(2)	7.7979(2)	
b/Å	18.1877(6)	36.7369(6)	
c/Å	12.5609(3)	14.1416(2)	
α/°	90	90	
β/°	104.094(2)	90	
Ύ/°	90	90	
Volume /Å ³	2049.85(10)	4051.15(14)	
Z	4	8	
$\rho_{calc}g/cm^3$	1.194	1.202	
μ/mm^{-1}	1.583	1.602	
F(000)	784	1552	
Crystal size/mm ³	0.15 x 0.12 x 0.11	0.050 x 0.050 x 0.010	
Radiation (wavelength/Å)	CuKα (λ=1.54184)	CuKα (λ=1.54184)	
2\O range /°	11.782 to 135.462	11.488 to 136.486	
Index ranges	-8≤h≤11, -21≤k≤21,	-9≤h≤9, -36≤k≤44, -10≤l≤17	
	-15 <u>≤</u> l≤15		
Reflections collected	24447	26139	
Independent reflections	3691(0.0700)	7418(0.0557)	
Date/restraints/parameters	3691/0/245	7418/0/473	
Goodness-of-Fit on F ²	1.103	1.032	
Final R indexes $[I \ge 2\sigma(I)]$	R1=0.0422, wR2=0.1035	$R_1 = 0.0341, wR_2 = 0.0795$	
Final R indexes [all data]	R1= 0.0521, wR2=0.1138	$R_1 = 0.0414, wR_2 = 0.0824$	
Largest diff. peak/hole / $e^{\dot{A}^{-3}}$	0.32/-0.44	0.27/-0.21	
Flack parameter	_	0.036(17)	

Figure S16 Calculated LUMOs from the optimised structures of 1b, 2b (cis/trans) and 3b

(iii) UV-Vis and fluorescence spectra

The experimental set-up consisted of a quartz cuvette for spectroscopic measurements. HPLC grade and dry solvents were used to prepare the samples.

Figure S17 Absorption spectra of **naphthalene** in cyclohexane (*black*), THF (*blue*), acetonitrile (*green*).

Figure S18 Absorption spectra of **1b** in cyclohexane (*black*), toluene (*red*), THF (*blue*), acetonitrile (*green*).

Figure S19 Absorption spectra of **2b** in cyclohexane (*black*), toluene (*red*), THF (*blue*), acetonitrile (*green*).

Figure S20 Absorption spectra of **3b** in cyclohexane (*black*), toluene (*red*), THF (*blue*), acetonitrile (*green*).

Figure S21 Concentration dependent emission of compound **naphthalene** in THF upon excitation at 288 nm. Concentration range of compound **naphthalene**: 1.76×10^{-4} M (*black*) $\rightarrow 3.49 \times 10^{-5}$ M (*blue*).

Figure S22 Concentration dependent emission of compound **1b** in THF upon excitation at 305 nm. Concentration range of compound **1b**: 1.26×10^{-4} M (*black*) $\rightarrow 1.50 \times 10^{-6}$ M (*blue*).

Figure S23 Concentration dependent emission of compound **2b** in THF upon excitation at 305 nm. Concentration range of compound **2b**: 1.36×10^{-4} M (*black*) $\rightarrow 1.61 \times 10^{-6}$ M (*blue*).

Figure S24 Concentration dependent emission of compound **3b** in THF upon excitation at 305 nm. Concentration range of compound **3b**: 1.82×10^{-4} M (*black*) $\rightarrow 1.40 \times 10^{-6}$ M (*blue*).

(iv) Cyclic Voltammetry measurements

Cyclic voltammetry of the bridged disilanes (**1b**, **2b** and **3b**) were performed at room temperature utilizing a BAS CGME Controlled Mercury Electrode cell stand at scan rates of 0.1 Vs^{-1} , with glassy carbon as the working electrode, a platinum auxiliary electrode and silver wire as a quasi-reference electrode. The glassy electrode was polished with Al₂O₃ fine particles and washed with water and acetone prior to use. The auxiliary electrode and the reference electrode were washed with acetone prior to use. The measurements were performed in dry acetonitrile in presence of *n*-Bu₄NPF₆ (0.2 mol/L) as the electrolyte and ferrocene/ferrocenium couple acting as the internal standard. The concentration of the bridged disilanes used was 1 mmol/L and the samples were degassed with nitrogen prior to the measurements which were also maintained under a nitrogen blanket.

Figure S25 Cyclic voltammogram of 1b.

Figure S27 Cyclic voltammogram of 3b.

Compound	$E_{ox}(\mathbf{V})$	HOMO $(eV)^a$	Ered (V)	LUMO (eV) ^a	HOMO-
					LUMO gap
					(eV)
1b	1.44	- 5.65	-2.18	- 2.03	3.62
2b	1.60	- 5.69	-2.07	- 2.02	3.67
3 b	1.48	- 5.71	-2.37	- 1.86	3.85

Table S2. Electrochemical data of 1b, 2b and 3b.

^{*a*} The energy levels were calculated from the oxidation and reduction peaks as referenced to Fc/Fc^+ (4.8 eV) below vacuum level.