Supporting Information

Post Synthetically Modified IRMOF-3 for Efficient Recovery and Selective Sensing of Uranium (VI) from Aqueous Medium

V. Venkata Sravani^{1,2}, Sarita Tripath1^{1,2}, B. Sreenivasulu², Satendra Kumar², S. Maji², C. V.

S. Brahmmananda Rao^{1,2}, A. Suresh^{*1,2}, and N. Sivaraman^{1,2}

¹Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603

102, Tamil Nadu, India.

²Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research,

Kalpakkam - 603 102, Tamil Nadu, India.

Corresponding author:

Dr. A. Suresh, Head, Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102, Tamil Nadu, India. Tel. +91 44 27480500 – 24028 Email:<u>asu@igcar.gov.in</u>

Table of Contents

Table S1: Conversion of IRMOF-3 to varied functionalized MOFs	S3
FTIR spectra of IRMOF-3 and PSM MOFs	S4
Powder XRD patterns for IRMOF-3 and PSM MOFs	S4
TGA plot of IRMOF-3 and PSM MOFs	S5
100.61 MHz ¹³ C-NMR spectra (DMSO- <i>d</i> ₆) of PSM MOFs	S5
³¹ P NMR spectra (161.92 MHz, ¹ H decoupled) of IRMOF-DPC in DMSO- d_6	S6
SEM and EDX spectra of IRMOF-3 and PSM MOFs	S6-S9
Table S2: BET surface area of IRMOF-3 and PSM MOFs	S10
Effect of contact time on uranium (VI) sorption onto MOFs	S11
Kinetic study	S12-S13
Table S3: Kinetic parameters for uranyl ion sorption on the MOFs	S13
Desorption studies	S14
Sensing studies of uranium(VI) with competing metal ions using IRMOF-3	S15-S16
and PSM MOFs	
Table S4: Langmuir model fitting of uranium (VI) fluorescent sensing studies	S17

using MOFs

Table S1. Conversion of IRMOF-3 to different functionalized MOFs

MOF	% Conversion
IRMOF-PC	62%
IRMOF-GA	70%
IRMOF-SMA	68%
IRMOF-DPC	72%

The percentage conversion of the amine groups in the IRMOF-3 to varied functionalized MOFs was determined by comparing the relative integrated areas of the aromatic resonances (corresponding to the C-3 position of the BDC ring) between the modified and unmodified BDC ligands.

 Luan, Y., Zheng, N., Qi, Y., Tang, J. & Wang, G. Merging metal-organic framework catalysis with organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale. *Catal. Sci. Technol.*2014, 4, 925-929.

Figure S1. FTIR spectrum of IRMOF-3 and its functionalized MOFs.

Figure S2. Powder XRD patterns of IRMOF-3 and its functionalized MOFs.

Figure S3. TGA plot of IRMOF-3 and its functionalized MOFs.

Figure S4. ¹³C-NMR (100 MHz, in DMSO-*d*₆) spectra of PSM MOFs.

Figure S5. ³¹P-NMR (162MHz, ¹H decoupled) in DMSO-*d*₆ of IRMOF-DPC.

(b)

Figure S6. (a) EDX spectra and (b) SEM image of IRMOF-3.

(a)

(b)

Figure S7. (a) EDX spectra and (b) SEM image of IRMOF-PC.

(b)

Figure S8. (a) EDX spectra and (b) SEM image of IRMOF-GA.

(b)

Figure S9. (a) EDX spectra and (b) SEM image of IRMOF- SMA.

(a)

(b)

Figure S10. (a) EDX spectra and (b) SEM image of IRMOF-DPC.

Table S2. I	BET surface	area of IRMO	F-3 and differ	ent function	alized MOFs
-------------	-------------	--------------	----------------	--------------	-------------

MOF	BET Surface area (m ² g ⁻¹)
IRMOF-3	2440 ¹
IRMOF-PC	1988
IRMOF-GA	1870
IRMOF-SMA	2052
IRMOF-DPC	1910

 Gascon, J., Aktay, U., Hernandez-Alonso, M. D., van Klink, G. P. M. & Kapteijn, F. Amino-based metal organic frameworks as stable, highly active basic catalysts. J. Catal.2009, 261, 75-87.

Figure S11. Effect of contact time on uranium (VI) sorption (%) onto (a) IRMOF-3, (b) IRMOF-PC, (c) IRMOF-GA, (d) IRMOF-SMA; pH = 6, m_{sorbent} = 10.0 mg, V_{solution} =3 mL, C_0 = 1 mg/mL, T=25 ±1°C.

Kinetic model

The plot of t/q_t vs t for IRMOF-3 and its PSM MOFs given the straight line and the linear form of the pseudo-second-order kinetic model is expressed as follows:

$$\frac{t}{q_t} = \frac{1}{K_2 q_t^2} + \frac{t}{q_e}$$

Where $q_e (mg \cdot g^{-1})$ and $q_t (mg \cdot g^{-1})$ are the amounts of the uranium absorption at equilibrium and at time t, respectively. And $K_2 (g \cdot mg^{-1} \cdot min^{-1})$ is the pseudo-second-order sorption rate constant. The model parameters and the correlation coefficient obtained are shown in Table S3.

Figure S12: Pseudo-second-order model fits for the kinetic rate on the sorbent (a) IRMOF-3, (b) IRMOF-PC, (c) IRMOF-GA, (d) IRMOF-SMA.

Table S3. Kinetic	parameters for	[.] uranium (VI)	sor	ption	on the M	10Fs
-------------------	----------------	------------------------	-----	-----	-------	----------	------

Pseudo-second-order kinetic model					
MOF	$q_{\rm e} ({\rm mg}\cdot{\rm g}^{-1})$	K_2 (g·mg ⁻¹ ·min ⁻¹)	R ²		
IRMOF-3	270 ± 8	0.00489	0.9998		
IRMOF-PC	285 ± 8	0.00694	0.9997		
IRMOF-GA	280 ± 8	0.0051	0.9999		
IRMOF-SMA	290 ± 8	0.00339	0.9999		
IRMOF-DPC	299 ± 8	0.00109	0.9999		

Figure S13. Sorption (%)/ Desorption (%) bar graphs of (a) IRMOF-3; (b) IRMOF-GA; (c) IRMOF-PC; (d) IRMOF-SMA with different eluents.

Sensing studies of uranium (VI):

The detection limit for IRMOF-3 and its PSM MOFs was calculated as follows:

$$DT = \frac{3\sigma}{\text{Slope}}$$

 $\sigma = 100 \times \frac{I_{\rm SE}}{I_0}$

Here, DT is the detection limit, I_{SE} is the standard error of the luminescence intensity measurement, as determined by the baseline measurement of blank samples monitored at 428 nm, 426 nm, 330 nm, 424 nm, and 334 nm of IRMOF-3 and PSM MOFs(IRMOF-PC, IRMOF-GA, IRMOF-SMA, and IRMOF-DPC) respectively, and I_0 is the measured luminescence intensity.

The slope was obtained from the linear fit of the uranyl concentration-dependent luminescence intensity curve in the 0-300 mg/L region (Figure 10 inset).

Figure S14. Emission spectra of (a) IRMOF-3, (b) IRMOF-PC, (c) IRMOF-GA, (d) IRMOF-SMA, and (e) IRMOF-DPC up on treatment of uranium (VI) and various competing metal ions (La³⁺, Ce⁴⁺, Nd³⁺, Sm³⁺, Gd³⁺, and Eu³⁺) with standard concentration of 100 mg/L.

Table S4: The Langmuir model fitting of U(VI) fluorescent sensing using IRMOF-3 and its

 PSM MOFs

S. No	MOF	R ²
1	IRMOF-3	0.9988
2	IRMOF-PC	0.9976
3	IRMOF-GA	0.9993
4	IRMOF-SMA	0.9936
5	IRMOF-DPC	0.9986