Supporting online materials for

Ultrahigh compressibility and superior elasticity carbon framework derived from shaddock peel for highperformance pressure sensing

Na Zheng^{1, 2}, Changzhou Chen^{1, 2*}, Mengqi Tang^{1, 2}, Weixin Wu^{1, 2}, Yan Jiang^{1, 2} Douyong Min^{1,2}

Optimization of PDMS concentration

PDMS and N-hexane mixed solvent with different concentration of PDMS was prepared by adding PDMS base agent (0.5 g, 1.0 g, 1.5 g and 2.0 g) and curing agent (base agent and curing agent in a mass ratio of 10:1) into 10 mL N-hexane. The detailed preparation of M-SPF samples has been described in section 2.3 and the corresponding products were named as M-SPF-0.5, M-SPF-1.0, M-SPF-1.5 and M-SPF-2.0. We found that the M-SPF-0.5 was fragile and non-elastic, which is not available for flexible sensing material. The densities of M-SPF-1.0, M-SPF-1.5 and M-SPF-2.0 were calculated to be 0.358 g/cm³, 0.571 g/cm³, 0.726 g/cm³, respectively, suggesting the thickness of PDMS layer on C-SPF increased as the concentration of PDMS increased. Due to the PDMS is a non-conductive medium, the conductivity of M-SPF will decrease with the increased amount of PDMS. The conductivities of M-SPF-1.0, M-SPF-1.5 and M-SPF-1.0, M-SPF-1.5 and M-SPF-1.0, M-SPF-1.5 and M-SPF will decrease with the increased amount of PDMS. The conductivity of M-SPF will decrease with the increased amount of PDMS. The conductivities of M-SPF-1.0, M-SPF-1.5 and M-SPF-2.0 samples were tested to be 1.47 s/m, 0.61 s/m and 0.19 s/m, respectively. Thus, M-SPF-1.0 with the best conductivity was used as the pressure sensing material in this study.

Fig. S1. The composition of the prepared pressure sensor.

Fig. S2. TG-DTG curves of SPF.

Fig. S3. The conductivity of C-SPFs obtained at different temperatures.

Fig. S4. Raman spectra of samples at different temperatures.

Fig. S5. The nitrogen adsorption and desorption isotherms of C-SPF in Brunauer-Emmett-Teller (BET) measurement.

Fig. S6. Photos of C-SPF before and after compression.

Fig. S7. Changes in brightness of LED lights without pressing and pressing.

Fig. S8. SEM images of M-SPF in the process of compression and release.

Fig. S9. Partial electrical response curves for 10,000 cyclic of M-SPF at 50% strain.

Fig. S10. The effect of thickness on the sensitivity of M-SPF-based sensor.

Fig. S11. Response of the same pressure sensor to electrical signals at 50% strain before and after three months.

Fig. S12. (a) SEM image of CSPP-PDMS (b) 100 cyclic loading–unloading curves under 50% compression strain. (c) 10 cyclic loading–unloading curves under 80% compression strain. (The inset represents the appearance of CSPP-PDMS before and after compression) (d) The RCR of the CSPP-PDMS based pressure sensor under 50% strain.

Samples	Bulk density (g/cm ³)	Porosity (%)	C/O
SP	0.0841	89	2.10
SPF	0.0342	94	2.53
C-SPF	0.0257	93	9.59
M-SPF	0.3584	67	1.76

Table S1 The bulk density, porosity and the ratio of carbon and oxygen content of the samples.

 Table S2 Material properties of each component in the simulation work.

Samples	Bulk density (g/cm ³)	Elastic modules(kPa)	Poisson ratio
C-SPF	0.0257	0.65	0.25
M-SPF	0.3584	21.9	0.35

Materials	Detection range and Sensitivity	Ref.	
2D WSe ₂ Nanosheets	1 -100 kPa (S=29.24 kPa ⁻¹)	14	
	0.001-0.5 kPa (S=18.42 kPa ⁻¹)		
2D MoSe ₂ Nanosheets	1-35 kPa (S=7.28 kPa ⁻¹)	15	
	40-100 kPa (S=2.63 kPa ⁻¹)		
	5 kPa (S=5 kPa ⁻¹)		
Alginate and graphene Sponge	50 kPa (S=1 kPa ⁻¹)	17	
	500-1000 kPa (S=0.005 kPa ⁻¹)		
rGO and Polyaniline Sponge	0-27 kPa (S=0.152 kPa ⁻¹)	19	
PANI Paper	2-90 kPa (S=2.23 kPa ⁻¹)	20	
PPy and Cotton	0.1-5 kPa (S=4.5 kPa ⁻¹)	21	
Courteme Determetheme Courses	0-2 kPa (S=0.26 kPa ⁻¹)	50	
Graphene–Polyurethane Sponge	2-10 kPa (S=0.03 kPa ⁻¹)		
	0-1 kPa (S=1.22 kPa ⁻¹)	7 1	
GO- Hybridized CN Is Aerogels	1-8 kPa (S=0.39 kPa ⁻¹)	51	
Silver Nano-flower Decorated Graphene Oxide-Sponges	0-10 kPa (S=0.572 kPa ⁻¹)	52	
	0-2 kPa (S=0.068 kPa ⁻¹)		
Carbon Black and Polyurethane	2-10 kPa (S=0.023 kPa ⁻¹)	53	
Sponge	10-16 kPa (S=0.036 kPa ⁻¹)		
None Charge A 1	0-3.5 kPa (S=0.43 kPa ⁻¹)	62	
Nano-fibrous Aerogels	3.5-5 kPa (S=1.02 kPa ⁻¹)		
	0-0.1 kPa (S=22.05 kPa ⁻¹)		
CNT/rGO–CNF carbon aerogel	0.1-1 kPa (S=11.82 kPa ⁻¹)	64	
	1-5 kPa (S=0.44 kPa ⁻¹)		
Carbide Nano-sheets and Bacterial			
Cellulose Carbon Aerogels	0-10 kPa (S=12.5 kPa ⁻¹)	S 1	

 Table S3 Comparison of the detection range and sensitivity for various pressure sensing materials.

	0-0.3 kPa (S=19.8 kPa ⁻¹)	 52	
Anglied carbon hanotubes/graphene	0.3-6 kPa (S=0.27 kPa ⁻¹)	52	
	0.3-10 kPa (S=0.046 kPa ⁻¹)	S3	
Graphene Sponges	10-40 kPa (S=0.007 kPa ⁻¹)		
Graphene/Polyimide	0-1.5 kPa (S=0.18 kPa ⁻¹)	S4	
Nanocomposite Foam	1.5-7 kPa (S=0.023 kPa ⁻¹)		
	1-10 kPa (S=48.5 kPa ⁻¹)	T1 ·	
M-SPF	10-100 kPa (S=63.4 kPa ⁻¹)	l nis work	
	100-800 kPa (25.6 kPa ⁻¹)		

References

- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing, L. Zhong, X. Peng and R. C. Sun, *Chem. Mater.*, 2019, **31**, 3301-3312.
- S2. M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang and Y. Zhang, *Adv. Funct. Mater.*, 2017, 27, 1606066.
- S3. L. Zhu, Y. Wang, D. Mei and X. Wu, J. Microelectromech. S., 2019, 28, 154-163.
- S4. Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, J. Li, Y. Yuan, X. He and Y. Li, ACS Nano, 2015, 9, 8933-8941.