Brønsted Acid-Promoted Hydroamination of Unsaturated Hydrazones via an Ionic Pathway: Access to Biologically Important 5-Arylpyrazolines

Han He, Ning Xu, Honglin Zhang, Bin Chen, Zhengnan Hu, Kang Guo, Jianlin Chun, Shujun Cao, and Yingguang Zhu*Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, Collegeof Sciences, Nanjing Agricultural University, Nanjing 210095, China
E-mail: ygzhu@njau.edu.cn
Supporting Information
Table of Contents
General information S2
General procedure for the hydroamination reaction S2
Mechanistic studies S2
Characterization data S4
X-ray structure of product $\mathbf{2 e}$ S17
References S18
NMR spectra. S19

General information. All commercially available reagents were used without further purification. Column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded on a 400 MHz spectrometer. Chemical shifts (δ) were reported in ppm , and coupling constants (J) were given in Hertz (Hz). Data were reported as $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet. High-resolution mass spectra (HRMS) were recorded on an AB SCIEX Triple TOF 5600+ mass spectrometer. Melting points were uncorrected. Alkenyl hydrazone substrates 1a-1ac were prepared according to the reported methods. ${ }^{1-4}$

General procedure for the hydroamination reaction (Scheme 2). To a reaction tube equipped with a magnetic stir bar were added alkenyl hydrazone $1(0.20 \mathrm{mmol})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(11 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere for 12 h , cooled to room temperature, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10: 1$) to give product 2.

Mechanistic studies

The experiment of the addition of radical scavenger BHT (Scheme 3a). To a reaction tube equipped with a magnetic stir bar were added alkenyl hydrazone 1a ($78.1 \mathrm{mg}, 0.20 \mathrm{mmol}$), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(11 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$), BHT ($121.2 \mathrm{mg}, 0.60 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 12 h , cooled to room temperature, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10: 1$) to give product $\mathbf{2 a}(71.5 \mathrm{mg}, 92 \%)$ as a white solid. The addition of a radical scavenger did not inhibit the reaction, still generating product 2a in 92% yield, which indicated a radical pathway might not be involved in the reaction process.

Procedure for the preparation of intermediates $\boldsymbol{Z - 3}$ and $\boldsymbol{E - 3}$ from $\mathbf{1 a}$ (Scheme $\mathbf{3 b}$).
To a reaction tube equipped with a magnetic stir bar were added alkenyl hydrazone 1a ($781.2 \mathrm{mg}, 2.0 \mathrm{mmol}$), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(110 \mu \mathrm{~L}, 2.0 \mathrm{mmol}\right.$), and $\mathrm{CH}_{3} \mathrm{CN}(20.0 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere for a much shorter reaction time (0.5 h). Thin-layer chromatography (TLC) analysis indicated that substrate 1a was completely consumed, and pyrazoline 2a was not observed. The crude reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20: 1 \sim 10: 1)$ to afford intermediate product Z-3 ($228.6 \mathrm{mg}, 29 \%$, white solid) and $E-3(443.2 \mathrm{mg}, 57 \%$, white solid).

Procedure for the preparation of pyrazoline product 2a from intermediate \mathbf{Z}-3 (Scheme 3c).

To a reaction tube equipped with a magnetic stir bar were added $Z \mathbf{- 3}(78.1 \mathrm{mg}, 0.20$ $\mathrm{mmol})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(11 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere for 12 h , cooled to room temperature, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10: 1$) to give product $\mathbf{2 a}(70.1 \mathrm{mg}, 90 \%)$ as a white solid.

Procedure for the preparation of pyrazoline product $\mathbf{2 a}$ from intermediate \boldsymbol{E}-3

 (Scheme 3c).To a reaction tube equipped with a magnetic stir bar were added $E-\mathbf{3}(78.1 \mathrm{mg}, 0.20$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}(11 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere for 12 h , cooled to room temperature, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10: 1$) to provide product 2 a ($65.3 \mathrm{mg}, 84 \%$) as a white solid.

The investigation of the formation of pyrazoline product 2a from the intermediate $\boldsymbol{Z}-\mathbf{3}$ or $\boldsymbol{E}-\mathbf{3}$ in the absence of $\mathbf{H}_{2} \mathrm{SO}_{4}$ (Scheme 3d).

To a reaction tube equipped with a magnetic stir bar were added Z-3 or $E-\mathbf{3}(78.1 \mathrm{mg}$, $0.20 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere for 12 h and cooled to room temperature. Thin-layer chromatography (TLC) analysis indicated that the intermediate Z-3 or E-3 kept intact, and the formation of product 2 a was not observed. The results suggest that the Brønsted acid plays an important role in the formation of the pyrazoline product from the intermediate.

Characterization data

5-methyl-3,5-diphenyl-1-tosyl-4,5-dihydro-1 H -pyrazole (2a)

White solid ($73.7 \mathrm{mg}, 94 \%$); mp 81-83 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.66$ (m, 2H) $7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ 7.19 (m, 3H), 7.14 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,143.4,143.0$, $136.9,131.1,130.1,129.0,128.6,128.2,127.60,127.55,126.5,125.8,71.8,52.8$, 25.2, 21.5; HRMS (ESI-TOF) m/z: [M+H] calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 391.1475$, found 391.1478.

3-(4-methoxyphenyl)-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2b)

White solid ($71.1 \mathrm{mg}, 85 \%$); mp 109-110 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (dd, $J=7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18$ (m, 3H), 7.13 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,152.3,143.5,142.9,136.9,128.9,128.2,128.1,127.6,127.5$, 125.8, 123.8, 114.0, 71.6, 55.4, 53.0, 25.2, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 421.1580$, found 421.1582 .

5-methyl-5-phenyl-3-(p-tolyl)-1-tosyl-4,5-dihydro-1H-pyrazole (2c)

White solid ($70.1 \mathrm{mg}, 87 \%$); mp 146-147 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (dd, $J=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18$ (m, 5H), 7.12 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.6, 143.4, $143.0,140.4,136.9,129.3,128.9,128.3,128.2,127.6,127.5,126.5,125.8,71.6,52.9$, 25.3, 21.48, 21.45; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 405.1631$, found 405.1634.

3-(4-chlorophenyl)-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2d)

White solid ($71.1 \mathrm{mg}, 84 \%$); mp 130-132 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.6$, $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $151.3,143.3,143.2,136.8,136.0,129.6,129.0,128.8,128.3,127.7,127.64,127.58$, 125.7, 72.1, 52.7, 25.3, 21.5; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 425.1085$, found 425.1083 .

3-(4-bromophenyl)-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2e)

White solid ($89.5 \mathrm{mg}, 95 \%$); mp 133-135 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-$ 7.50 (m, 6H), 7.31 (dd, $J=7.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28-7.20$ (m, 3H), 7.14 (d, $J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.46(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.4, 143.3, 143.2, 136.8, 131.8, 130.1, 129.0, 128.3, 127.9, 127.7, 127.6, 125.7, 124.4, 72.1, 52.7, 25.3, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} 469.0580$, found 469.0580 .

5-methyl-5-phenyl-1-tosyl-3-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-

 pyrazole (2f)

White solid ($77.2 \mathrm{mg}, 84 \%$); mp 133-134 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=7.7$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $151.0,143.3,143.1,136.7,134.4,131.4(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.0,128.3,127.7,127.5$,
126.6, 125.6, 125.4 (q, $J=4.0 \mathrm{~Hz}$), 123.7 (q, $J=270.0 \mathrm{~Hz}$), 72.3, 52.5, 25.2, 21.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 459.1349$, found 459.1348.

3-(3-chlorophenyl)-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2g)

Yellow oil ($84.0 \mathrm{mg}, 99 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,143.2,136.8,134.7,132.9,130.0$, 129.9, 129.1, 128.3, 127.7, 127.6, 126.4, 125.7, 124.6, 72.1, 52.7, 25.3, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 425.1085$, found 425.1087 .

5-methyl-5-phenyl-3-(o-tolyl)-1-tosyl-4,5-dihydro-1H-pyrazole (2h)

Yellow oil (59.2 mg, 73\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (dd, $J=6.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}$, $3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,143.6,143.2$, 138.1, 136.6, 131.8, 129.8, 129.3, 128.9, 128.5, 128.3, 127.9, 127.5, 125.8, 70.8, 55.1, 25.0, 23.6, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 405.1631$, found 405.1633.

3-(2-chlorophenyl)-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2i)

White solid ($71.8 \mathrm{mg}, 85 \%$); mp $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-$ $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $(\mathrm{q}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=$ 17.6 Hz, 1H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,143.2$, $143.2,136.8,132.6,130.7,130.6,130.4,130.3,128.9,128.2,127.7,127.6,126.8$, 125.7, 72.5, 55.5, 24.8, 21.5; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 425.1085$, found 425.1085 .

5-methyl-3-(naphthalen-2-yl)-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2j)

White solid (77.5 mg, 88\%); mp $169-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (dd, $J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.6,143.4,143.1,136.9,134.0,132.9$, $129.0,128.8,128.4,128.31,128.29,127.8,127.64,127.62,127.2,126.71,126.69$, $125.8,123.5,72.0,52.8,25.4,21.5 ; \operatorname{HRMS}(E S I-T O F) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 441.1631$, found 441.1632 .

5-methyl-5-phenyl-3-(thiophen-2-yl)-1-tosyl-4,5-dihydro-1H-pyrazole (2k)

2k

White solid ($63.9 \mathrm{mg}, 81 \%$); mp 162-163 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}$, $3 \mathrm{H}), 7.13$ (d, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4$, 143.1, 143.0, 136.7, 134.7, 128.9, 128.6, 128.2, 128.1, 127.6, 127.4, 125.8, 72.0, 53.4, 25.2, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ 397.1039, found 397.1040 .

5-methyl-3-pentyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (21)

21
Yellow oil ($75.6 \mathrm{mg}, 98 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}$, $3 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5,143.7,142.8,137.1,128.8,128.1,127.5,127.3,125.6,70.8$, 55.2, 31.3, 30.0, 25.8, 24.9, 22.3, 21.4, 13.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 385.1944$, found 385.1947.

3-isopropyl-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2m)

White solid ($63.6 \mathrm{mg}, 89 \%$); mp 121-123 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.04(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,143.6$,
142.7, 136.9, 128.7, 128.0, 127.5, 127.2, 125.5, 70.9, 52.9, 29.7, 24.6, 21.4, 19.8, 19.7; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 357.1631$, found 357.1633.

3-cyclopropyl-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2n)

White solid ($45.7 \mathrm{mg}, 65 \%$); mp $100-101{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.88(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.86-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,143.5,142.8,136.9,128.9,128.1,127.6,127.4,125.6,70.7,52.7,24.8,21.5$, 11.5, 6.5, 6.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 355.1475$, found 355.1472 .

3-cyclopentyl-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (20)

White solid ($71.1 \mathrm{mg}, 90 \%$); mp $48-49{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05$ (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.87$ - $1.81(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,143.7$, $142.8,137.0,128.8,128.1,127.6,127.3,125.6,70.9,53.7,40.4,30.2,30.1,25.3,24.7$, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 383.1788, found 383.1789 .

3-cyclohexyl-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2p)

White solid ($77.5 \mathrm{mg}, 98 \%$); mp 97-98 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.87$ $(\mathrm{s}, 3 \mathrm{H}), 1.86-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.17(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.1, 143.6, 142.7, 137.0, 128.8, 128.1, 127.5, 127.3, 125.6, 70.6, 53.4, 39.2, 30.1, 30.0, 25.8, 25.63, 25.61, 24.8, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 397.1944$, found 397.1946.

3-(tert-butyl)-5-methyl-5-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2q)

White solid ($63.7 \mathrm{mg}, 86 \%$); mp $83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27$ (m, 2H), $7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07$ (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,143.7,142.8,137.0,128.7,128.1,127.7,127.3$, 125.6, 71.5, 52.1, 34.1, 27.8, 24.5, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 371.1788$, found 371.1785.

5-methyl-3-phenyl-5-(p-tolyl)-1-tosyl-4,5-dihydro-1H-pyrazole (2r)

White solid ($78.8 \mathrm{mg}, 97 \%$); $\mathrm{mp} 137-138{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-$ 7.67 (m, 2H), 7.57 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.37$ (m, 3H), 7.21 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J$
$=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,142.9,140.4,137.3,136.9,131.1,130.1,128.82,128.79,128.6,127.5,126.5$, 125.7, 71.7, 52.7, 25.3, 21.5, 21.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 405.1631$, found 405.1630 .

5-(4-chlorophenyl)-5-methyl-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2s)

White solid ($83.5 \mathrm{mg}, 98 \%$); mp 70-71 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.63$ $(\mathrm{m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ 7.12 (m, 4H), 3.45 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.5, 143.3, 141.9, 136.7, 133.6, 130.9, 130.3, 129.0, 128.7, 128.3, 127.5, 127.2, 126.5, 71.3, 52.6, 25.2, 21.5; HRMS (ESITOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 425.1085$, found 425.1083 .

5-(4-bromophenyl)-5-methyl-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2t)

White solid ($89.6 \mathrm{mg}, 95 \%$); mp 67-69 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}$) $\delta 7.74-7.67$ (m, 2H), 7.58 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45-7.38$ (m, 3H), $7.34-7.27$ (m, 2H), $7.21-$ 7.13 (m, 4H), 3.45 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (s, 3H), 2.00 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,143.3,142.3,136.6,131.2,130.8$, 130.3, 129.0, 128.6, 127.5, 127.4, 126.5, 121.7, 71.3, 52.5, 25.1, 21.5; HRMS (ESITOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} 469.0580$, found 469.0578 .

5-(4-fluorophenyl)-5-methyl-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2u)

White solid ($80.2 \mathrm{mg}, 98 \%$); $\mathrm{mp} 130-131{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $6.95-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1(\mathrm{~d}, J=$ $245.0 \mathrm{~Hz})$, 152.5, 143.3, 139.3 (d, $J=3.0 \mathrm{~Hz}$), 136.8, 131.1, 130.2, 129.0, 128.6, 127.6 (d, $J=8.0 \mathrm{~Hz}$), 127.5, 126.5, $115.0(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 71.3,52.7,25.5,21.5$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S} 409.1381$, found 409.1382.

5-(3,4-dichlorophenyl)-5-methyl-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2v)

White solid ($77.7 \mathrm{mg}, 85 \%$); mp $152-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-$ 7.65 (m, 2H), 7.60 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.38$ (m, 3H), $7.33-7.27$ (m, 2H), 7.24 - $7.15(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.99$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.5, 143.7, 143.5, 136.4, 132.4, 131.9, 130.7, 130.4, 130.1, 129.2, 128.7, 128.0, 127.4, 126.6, 125.3, 70.8, 52.2, 25.1, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 459.0695$, found 459.0695 .

5-methyl-5-(naphthalen-2-yl)-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2w)

White solid ($80.4 \mathrm{mg}, 91 \%$); mp 174-176 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-$ 7.70 (m, 5H), 7.63 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46$ (m, 4H), $7.46-7.41$ (m, 3H), 7.36 (dd, $J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}$,
$J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.6$, $143.0,140.2,136.7,132.7,132.6,131.1,130.1,128.8,128.6,128.3,128.0,127.4$, 127.3, 126.5, 126.2, 126.1, 124.6, 123.9, 71.8, 52.6, 25.4, 21.4; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 441.1631$, found 441.1630.

5,5-dimethyl-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2x)

White solid ($39.1 \mathrm{mg}, 60 \%$); mp 53-55 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ (s, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,143.4,137.3$, 131.4, 130.0, 129.2, 128.5, 128.1, 126.4, 69.1, 49.2, 27.1, 21.5; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 329.1318$, found 329.1315.

5-cyclohexyl-5-methyl-3-phenyl-1-tosyl-4,5-dihydro-1H-pyrazole (2y)

White solid ($55.4 \mathrm{mg}, 72 \%$); mp 57-58 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.92$ $-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}$, $1 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.7$, 143.2, 137.6, 131.4, 129.8, 129.2, 128.4, 127.8, 126.3, 75.9, 45.2, 42.4, 28.4, 27.6, 26.3, 26.3, 25.8, 24.3, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 397.1944, found 397.1943.

5-methyl-1,3,5-triphenyl-4,5-dihydro-1H-pyrazole (2ab)

Yellow solid ($39.5 \mathrm{mg}, 63 \%$); mp 166-167 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-$ 7.69 (m, 2H), $7.57-7.49$ (m, 2H), $7.43-7.37$ (m, 4H), $7.36-7.29(m, 2 H), 7.14-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9,145.2$, 143.6, 133.0, 129.0, 128.6, 128.5, 128.4, 127.2, 125.6, 125.5, 119.4, 115.3, 69.9, 53.5, 22.2; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} 312.1626$, found 312.1628 .

5-methyl-3,5-diphenyl-1-(2,4,6-trichlorophenyl)-4,5-dihydro-1H-pyrazole (2ac)

Yellow solid ($76.8 \mathrm{mg}, 92 \%$); mp 127-128 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-$ 7.67 (m, 2H), $7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~d}$, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,145.4,138.2,137.0,132.8,132.3,128.8,128.6,128.0,127.1,125.92,125.85$, 70.9, 51.4, 24.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} 415.0530$, found 415.0533 .

White solid (34.1 mg, 61\%); mp 146-147 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-$ 7.68 (m, 2H), $7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,151.5,144.9,131.5,130.1,128.7,128.6,127.0,126.4,124.4$, 67.5, 52.3, 24.5, 23.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ 279.1492, found 279.1492.
(5-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone (2ae)

White solid ($49.0 \mathrm{mg}, 70 \%$); mp 100-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-$ $7.89(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.36-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,152.3,144.7,135.5,131.5$, $130.6,130.2,130.0,128.69,128.65,127.5,127.1,126.6,124.4,68.8,51.7,24.4 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ 341.1648, found 341.1646.
N^{\prime}-((1E,2Z)-1,3-diphenylbut-2-en-1-ylidene)-4-methylbenzenesulfonohydrazide (Z-3)

Z-3
White solid (228.6 mg, 29\%); mp 157-159 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (s, $1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.1, 147.1, 143.6, 138.8, 135.9, 135.4, 129.5, 129.3, 128.7, 128.4, 128.2, 127.7, 126.9, 126.2, 116.7, 24.8, 21.6; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 391.1475$, found 391.1475.
N^{\prime}-((1E,2E)-1,3-diphenylbut-2-en-1-ylidene)-4-methylbenzenesulfonohydrazide ${ }^{5}$ (E-3)

White solid ($443.2 \mathrm{mg}, 57 \%$); mp $99-101{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00$ (s, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,146.2,144.0,139.6,135.7,135.6,129.8,129.5,128.7$, 128.6, 128.4, 127.9, 126.8, 125.8, 115.8, 21.5, 18.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 391.1475, found 391.1478.

X-ray structure of 2 e (CCDC 2018227)

Crystal data and structure refinement for 2e

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system

2 e
$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$
469.39

296(2) K
$0.71073 \AA$
Monoclinic

Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
Unit cell dimensions	$\mathrm{a}=12.3545(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=11.9990(4) \AA \quad \beta=94.0510(10)^{\circ}$.
	$\mathrm{c}=14.3274(6) \AA \quad \gamma=90^{\circ}$.
Volume	2118.61(13) \AA^{3}
Z	4
Density (calculated)	$1.472 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.061 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	960
Crystal size	$0.320 \times 0.250 \times 0.220 \mathrm{~mm}^{3}$
Theta range for data collection	2.104 to 27.567°.
Index ranges	$-13<=\mathrm{h}<=16,-14<=\mathrm{k}<=15,-18<=1<=18$
Reflections collected	32627
Independent reflections	4888 [R(int) $=0.0397]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.4795
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4888 / 0 / 264
Goodness-of-fit on F^{2}	1.016
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0430, \mathrm{wR} 2=0.1048$
R indices (all data)	$\mathrm{R} 1=0.0672, \mathrm{wR} 2=0.1167$
Extinction coefficient	n/a
Largest diff. peak and hole	0.675 and -0.744 e. \AA^{-3}

References

(1) Tripathi, C. B.; Mukherjee, S. Org. Lett. 2014, 16, 3368.
(2) Imai, T.; Nishida, S. Synthesis 1993, 1993, 395.
(3) Rajam, S.; Jadhav, A. V.; Li, Q.; Sarkar, S. K.; Singh, P. N. D.; Rohr, A.; Pace, T.
C. S.; Li, R.; Krause, J. A.; Bohne, C.; Ault, B. S.; Gudmundsdottir, A. D. J. Org. Chem. 2014, 79, 9325.
(4) Hu, X.-Q.; Qi, X.; Chen, J.-R.; Zhao, Q.-Q.; Wei, Q.; Lan, Y.; Xiao, W.-J. Nat. Chem. 2016, 7, 11188.
(5) Liu, W.; Wang, H.; Zhao, H; Li, B.; Chen, S. Synlett 2015, 26, 2170.

$\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

 ヘNへNへべNへNへべN

Nock

[^0]


``` -
```


ヘNNNNNNNNNNN

2p

[^1]

ค.

が
Crirncir

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

$\stackrel{\substack{0 \\ \stackrel{0}{j} \\ i}}{1}$
O
$\stackrel{\text { N }}{1}$
i

$\stackrel{\hat{C}}{\substack{m \\ N}}$

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^1]:

