Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplemental material

Estimation of total energy requirement for sewage treatment by a microbial fuel cell with a one-

meter air-cathode assuming Michaelis-Menten COD degradation

Taiki Yamane^{†1}, Naoko Yoshida^{†*1}, and Mari Sugioka¹
[†] these authors contributed equally to this work.
¹Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan

*corresponding author: yoshida.naoko@nitech.ac.jp

Supplementary Table 1. The comparison of performance in the MFC treating municipal wastewater

Supplementary Fig. 1 The polarization curve of an MFC with the same configuration operated in a water

channel of effluent of the primary sedimentation tank.

Туре	Bio- cathode- MES	Biocatho de-IEM- MFC	Air-NIE-	MFC	Air-CEM-MFC				Air- AEM -MFC
Total wastewater volume [L]	1000	1000	250	255	85	4	200	190	9.6
Operation time [d]	75	1 year	130	98	1 month	450	-	1 year	120
Anode ^a	CB	GAC	CB	СВ	СВ	СВ	CB	CB	GNW F
Cathode ^b	СВ	GAC	Pt/CC	SSM/AC	SSM/AC	CC/AC CC/Pt	CC/NA C	CC/NA C	CC/A C
Separator ^c GDL ^d	PS _	CEM	PP PTFE	GFM PTFE	CPTMW PVC	CEM	CEM	CEM	AEM -
ASSA ^e [m ² /m ³]	34*1	-	16*7	17^{*10}	26*15	-	-	80^{*16}	14
$CSSA^{f}$ $[m^{2}/m^{3}]$	29^{*2}	-	8*8	4.1^{*11}	7.3	80^{*16}	80^{*16}	80^{*16}	14
SSSAg [m ² /m ³]	12*3	54 ^{*6}	8^{*8}	4.1^{*11}	7.3	80^{*16}	80^{*16}	80^{*16}	14
COD _{influent} [mg/L]	260	250	333 ^{*9}	$\frac{141^{*12}}{212^{*13}}$	376	280	156	155	180
COD _{effluent} [mg/L]	25	<50	70	-	90	$90^{*17} \\ 93^{*18}$	33 ^{*24}	97	99
HRT (h)	5	2	144	$43^{*12} \\ 12^{*13}$	batch, 11[d]	11	18*25	12	12
COD-RE(%)	91	70-80	79	$41^{*12} \\ 25^{*13}$	80	65-70 ^{*19}	79 ^{*26}	38	47
TN-RE(%) ^h	64	-	71	$\frac{18^{*12}}{70^{*13}}$	-	27^{*20} 76^{*21}	-	68	-
Current density [A/m ² - SP]	0.071	-	0.22	0.35-0.4 ^{*12} 0.05-0.1 ^{*13}	0.39	-	0.16*27	0.063*32	0.26
Current density[A/m ³]	1.0	-	1.7	$\begin{array}{c} 1.41.6^{*12,*14} \\ 0.2\text{-}0.4^{*13,*14} \end{array}$	2.8	*23	13 ^{*28}	5.0*33	3.6
Power density [W/m ² -SP]	0.029	0.42-3.64	0.05	-	-	-	0.032*29	-	0.023
Power density [W/m ² -CA]	-	-	0.1	$\begin{array}{c} 0.043^{*12} \\ 0.011^{*13} \end{array}$	0.083	-	0.032*29	-	0.023
Power density [W/m ³]	0.41	7-60	0.4	$\begin{array}{c} 0.18^{*12} \\ 0.045^{*13} \end{array}$	0.61	-	2.5^{*30}	-	0.32
Energy density [kWh/m ³]	0.0020	0.033	0.057	$\begin{array}{c} 0.0077^{*12} \\ 0.00054^{*13} \end{array}$	-	$\begin{array}{c} 0.026^{*17} \\ 0.024^{*18} \end{array}$	0.03*31	-	0.003
CE(%)	0.64^{*4}	41-75	5	30^{*12} 3.8^{*13}	-	11	-	4.9*34	19
EGE [kWh/kg- COD] ^f	0.0085*5	-	0.22	$\begin{array}{c} 0.18^{*12} \\ 0.015^{*13} \end{array}$	-	$\begin{array}{c} 0.0034^{*17} \\ 0.0192^{*18} \end{array}$	-	-	0.054
References	He et al., 2019	Liang et al., 2018	Feng et al., 2014	Hiegemann et al., 2019	Rossi et al., 2019		Ge et al., 2015	Ge and He, 2016	This study

Supplementary Table 1. The comparison of performance in the MFC treating municipal wastewater

 ^a CB:carbon brush,GAC:granule activated carbon, GNWF:graphite non woven fabric
 ^b CB: Carbon brush, GAC: Granule activated carbon, CC: Carbon cloth, SSM: Stainless steel mesh, AC: Activated carbon, Pt: Platinum, NAC: Nitrogen-doped activated carbon

^c PS: Polyurethane sponge, GFM: Glass fiber mat, CPTMW: Cellulose/Polyester textured nonwoven

wipe, CEM: Cation exchange membrane, AEM: Anion exchange membrane ^d PTFE:Polytetrafluoroethylene, PVC:Polyvinyl chloride ^e ASSA: Anode specific area per wastewater volume ^fCSSA: Cathode specific area per wastewater volume ^gSSSA: Separator specific area per wastewater volume ^h EGE: Energy generation efficiency *1 The surface area of the brush as a cylinder divided by the reactor volume $(1.52\pi \times 2 + 3.0\pi \times 110) \times 48 \times 8/10000)/1.2$ $^{*2}(1.52\pi\times2+3.0\pi\times110)\times48\times7/10000)/1.2$ *3 1.0[m] ×1.0[m] ×14/1.2 $^{*4}1.0[A/m^{3}] \times 3600[s/h] \times 5[h] / \{(260-25[g/m^{3}])/32[g/mol] \times 4[n/mol-O_{2}] \times 96485[C/mol])\} \times 100$ *5 0.0020[kwh/m³]/0.235[kg/m³] *6 66×33×5/10000/0.02 ^{*7} The surface area of the brush as a cylinder divided by the reactor volume $(1.52\pi\times2+4\times\pi\times100)$ ×32/10000)/0.25 *8 2[m²]/0.25[m³] *9 70[mg/L]/(1-0.79) *10 4.2[m²]/0.255[m³] *11 1.04[m²]/0.255[m³] *12 The value obtained in14-35d *13 The value obtained in 77-98d ^{*14} The values obtained by multiplication of current density [A/m²] ×CSSA[m²/m³] ^{*15} The surface area of the brush as a cylinder divided by the reactor volume $(2.5^{2}\pi\times2+5.1\pi\times61)$ ×22/10000)/0.085 *16 (5¹/₁₀₀/10000)/(2.5²¹/₁₀₀/1000000) *17 The value obtained in MFC-AC *18 The value obtained in MFC-Pt *19 The value obtained in both MFC *20 The value in effluent of anolyte *21 The value in effluent of catholyte tank ^{*23} The value was shown only in a graph and hard to read visibly. *24 The effluent from 12h of anodic chamber and 6h of catholyte tank *25 12h of anodic chamber and 6h of catholyte tank *26 (156-33)/156×100(%), The value was obtained in the effluent in catholyte collection tank. *27 0.3/(500π×12)×1e-4, 0.15A of the maximum current was visibly read from a graph $^{*28}0.3/(625\pi\times12)\times1e^{-6}$, 0.15A of the maximum current was visibly read from a graph *29 0.06/(500n×12)×1e-4 *30 0.06/(625n×12)×1e-6 $*^{31}$ 1.4[W/m³] ×12[h] $^{*32}5.0$ [A/m³] ×(625 π ×1e⁻⁶/500 π ×1e⁻⁴), the value was read visibly from a graph *33 5.0[A/m³], the value was read visibly from a graph $^{*34}1.0[A/m^{3}] \times 3600[s/h] \times 5[h] / \{(260-25[g/m3])/32[g/mol] \times 4[n/mol-O2] \times 96485[C/mol])\} \times 100$

Supplementary Figure 1 The polarization curve of an MFC with the same configuration operated in a water channel of effluent of the primary sedimentation tank. The PI curve was obtained by connecting an external resistance of $1000 \sim 2\Omega$.

