Fractionation and Characterization of Lignin from Sugarcane Bagasse Using a Sulfuric Acid Catalyzed Solvothermal Process

Saksit Imman^a, Punjarat Khongchamnan^a, Wanwitoo Wanmolee^b, Navadol Laosiripojana^c, Torpong Kreetachat^a, Chainarong Sakulthaew^d, Chanat Chokejaroenrat^e and Nopparat Suriyachai^a

^aSchool of Energy and Environment, University of Phayao, Tambon Maeka, Amphur Muang Phayao 56000, Thailand

^bNational Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

^cThe Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand

^dDepartment of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand

^eDepartment of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, Thailand

Electronic Supplementary Information

Dun	Response	Concentration of product in hydrolysate (g/L)									
No.	Hemicellulose removal (%)	Glucose	Xylose	Arabinose	Acetic acid	Formic acid	Lactic acid	HMF	Furfural		
1	94.3	2.32	10.61	1.12	0.21	0.17	0.13	0.11	0.32		
2	89.6	2.13	12.31	0.65	0.13	0.09	0.09	0.04	0.25		
3	96.7	3.56	9.83	1.57	0.41	0.25	0.16	0.12	0.38		
4	89.1	1.75	11.15	2.22	0.24	0.12	0.05	0.05	0.14		
5	97.2	3.78	10.23	1.51	0.18	0.32	0.22	0.27	0.42		
6	95.9	3.21	9.97	1.86	0.27	0.17	0.11	0.16	0.29		
7	93.1	2.83	10.72	1.22	0.26	0.26	0.18	0.15	0.32		
8	98.6	3.96	8.66	0.91	0.35	0.25	0.16	0.24	0.41		
9	89.8	1.19	12.17	1.55	0.13	0.14	0.06	0.08	0.12		
10	93.3	2.45	11.48	2.64	0.37	0.15	0.09	0.09	0.26		
11	92.7	2.75	11.28	2.76	0.19	0.24	0.05	0.14	0.19		
12	94.1	2.13	10.97	1.64	0.22	0.22	0.12	0.15	0.25		
13	95.6	2.56	11.32	2.89	0.29	0.19	0.23	0.17	0.21		
14	96.4	2.51	9.43	3.16	0.31	0.33	0.18	0.26	0.17		
15	88.4	1.22	12.51	1.59	0.11	0.05	0.07	0.04	0.07		

Table S1 Product profile in liquid fraction during solvothermal fractionation process

Assignment	Wavenumber (cm ⁻¹)				
	Native sugarcane bagasse	Remaining pulp			
O-H stretching vibrations of the -OH groups	3338	3332			
C-H stretching vibrations	2916	2902			
C=O ester group vibration of the acetyl and uronic ester groups	1734	N/A			
O-H bending vibrations of absorbed water	1637	1637			
Aromatic C=C in plane stretching of the aromatic ring	1514	N/A			
C=C stretching vibration of the aromatic rings	1462	N/A			
Acetyl groups present as branched groups	1232	N/A			
C-O-H, stretching of alcohols	N/A	1053			
C-O-C pyranose ring skeleton	1031	1029			
Glycosidic C-H stretching vibration out of the plane of the aromatic ring	N/A	898			

 Table S2
 Assignment of FT-IR spectra of native sugarcane bagasse and remaining pulp

Assignment	Wavenumber (cm ⁻¹)					
	Commercial organosolv lignin	Lignin recovery				
O-H stretching	3410	3406				
C-H stretching in CH_2 and CH_3 groups	2935, 2845	2935, 2845				
C=O stretching, unconjugated	1699	1704				
Aromatic skeletal vibrations (S > G)	1602	1605				
Aromatic skeletal vibrations (G > S)	1514	1514				
C-H deformations in -CH ₂ - and -CH ₃	1459	1463				
Aromatic skeletal vibrations	1422	1427				
Aliphatic C-H stretch in CH_3 , not in OCH_3	1362	1367				
S ring breathing	1330	1325				
G ring breathing	1261	1265				
C-C and C-O stretch, G condensed > G	1224	1219				
C-O stretch in ester groups (HGS)	1173	1168				
Aromatic C-H in plane deformation (S)	1127	1121				
Aromatic C-H in plane deformation (G > S)	1030	1035				
CH=CH- out-of-plane deformation (trans)	984	984				
Aromatic C-H out-of-plane deformation (G)	N/A	N/A				
Aromatic C-H out-of-plane deformation (S + H)	835	836				
C-H bond in the aromatic ring from G	N/A	N/A				

 Table S3 Assignment of FT-IR spectra of commercial organosolv lignin and lignin recovery

Sample	T _g onset (°C)	Т _g (°С)		
COL	145.7	154.1		
BGL	102.5	111.6		

Table S4 Glass transition temperature of commercial organosolv lignin and lignin recovery

Raw materials	Extraction process	Lignin yield (%)	M _w ª	M _n ^b	PDI	DTG _{max} (°C) ^d	T _g (°C) ^e	S:G:H ^f	Lignin substructures ^g	References
Sugarcane bagasse	One-step fractionation MIBK:methanol:water	87.1	1374	785	1.75	291 and 437	111.6	25.1:42.1:32.6	β-O-4' linkages, resinol structures formed by β-β, syringyl unit, guaiacyl unit, <i>p</i> -hydroxyphenyl unit, <i>p</i> -coumarate, and ferrulate	This study
Sugarcane bagasse	Ethanol pretreatment	N/A	6441	4181	1.51	355	N/A	25.32:58.23:16.46	β-O-4, C _γ -acetylated β-O-4, phenylcoumaran, resinol, β-D- Xylopyranoside	[35]
Sugarcane bagasse	Glycerol pretreatment	60.4	4288	1958	2.2	N/A	N/A	51:43:5	β-aryl ether, phenylcoumaran, resinol, guaiacyl, p- hydroxyphenyl, syringyl, p- coumarate, ferulate, feruloyl glycerol	[41]
Sugarcane bagasse	Acid-catalysed crude glycerol pretreatment	85.2	N/A	N/A	N/A	N/A	N/A	46:45:9	Guaiacyl, p-hydroxyphenyl, syringyl, cinnamate, β-O-4, β-5, β- β, cinnamoyl glycerol	[42]
Sugarcane bagasse	Acetosolv extraction	55.6	2480	248	10	>500	46- 60	N/A	Syringyl, oxidized syringyl, guaiacyl, p-hydroxyphenyl, p- coumarate, cinnamic aldehyde, aryl ether with A- α , β -O-4, ferulate, phenylcoumaran	[43]
Sugarcane bagasse	Acidified ethylene glycol	35.8	6518	3821	1.7	380	N/A		b-O-4 alkyljaryl ethers, b-O-4' aryl ethers linkages with and p- hydroxybenzoated -OH at g- carbon, resinol, phenylcoumarane formed by b-5' and a-O-4', spirodienones formed by b-1' and a-O-a', p-hydroxyphenyl, syringyl, oxidised syringyl, guaiacyl, oxidised guaiacyl, p- hydroxybenzoate, p-coumaric acid	[37]
Aleppo	Ethanol/water	N/A	N/A	N/A	N/A	344 and	96.5	N/A	Syringyi, gualacyi, methoxyl	[22]

Table S5 Summary of lignin properties from various biomass resource during solvothermal process.

pine	pretreatment					388			groups, etherified syringyl, etherified guaiacyl	
Chinese quince	Ethanol organosolv pretreatment	14.4	5636	2255	2.5	374	N/A	59.72:40.21:0.07	β-O-4' linkage, C _α -ethoxylation-β- O-4' linkage, resinol structures formed by β-β, phenylcoumaran formed by β-5' linkage, spirodienone formed by β-1' linkage, guaiacyl, p- hydroxyphenyl, cinnamyl alcohol end-groups, syringyl, oxidized syringyl units linked a carbonyl at C _α	[44]
Miscanthus	Organosolv pulping (Ethanol:water)	77.86	1261- 1921	1066- 1365	1- 1.5	N/A	N/A	0.95-4.05: 8.61- 22.23:36.72-39.60	N/A	[45]
Eucalyptus	One-step fractionation MIBK:methanol:water	N/A	10940	5163	2.1	351	N/A	62.5:30.3:0.9	β-O-4' alkyl-aryl ethers, β-β resinols, β-5' phenylcoumarans, syringyl, C _α -oxidized syringyl, guaiacyl	[46]

^aMolecular weight according to GPC analysis

^bNumber-average molecular weight according to GPC analysis

^cPolydispersity index (Mw/Mn) according to GPC analysis

^dDerivative thermogravimetric curve according to TGA analysis

^eGlass transition temperature according to DSC analysis

^fRatio of syringyl, guaiacyl, and p-hydroxyphenyl according to Py-GCMS analysis

^gLlignin substructures according to NMR analysis