Supplementary Information

Stephapierrines A–H, new tetrahydroprotoberberine and aporphine alkaloids from the tubers of *Stephania pierrei* Diels and their anti-cholinesterase activities

Waraluck Chaichompoo,^a Pornchai Rojsitthisak,^{*a,b} Wachirachai Pabuprapap,^c Yuttana Siriwattanasathien,^c Pathumwadee Yotmanee,^c Woraphot Haritakun^d and Apichart Suksamrarn^c

^aDepartment of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand ^bNatural Products for Aging and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand ^cDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand ^dProgram in Chemical Technology, Faculty of Science and Technology, Suan Dusit University, Bangkok 10700, Thailand * Correspondence: pornchai.r@chula.ac.th; Tel.: +66-2-218-8310; Fax: +66-2-254-5195

List of Figures

Figure	Contents	Page
S1. ¹ H NMR spectrum (CDCl ₃ , 400 MHz)	of stephapierrine A (1)	10
S2. Expansion of ¹ H NMR spectrum (CDC)	3, 400 MHz) of stephapierrine A (1) (1)	10
S3. Expansion of ¹ H NMR spectrum (CDC)	3, 400 MHz) of stephapierrine A (1) (2)	11
S4. ¹³ C NMR spectrum (CDCl ₃ , 100 MHz)	of stephapierrine A (1)	11
S5. DEPT135 spectrum (CDCl ₃ , 100 MHz)	of stephapierrine A (1)	12
S6. COSY spectrum of stephapierrine A (1)	in CDCl ₃	12
S7. Expansion of COSY spectrum of stepha	pierrine A (1) in $CDCl_3$	13
S8. HMQC spectrum of stephapierrine A (1)	in CDCl ₃	13
S9. Expansion of HMQC spectrum of steph	apierrine A (1) in CDCl ₃ (1)	14
S10. Expansion of HMQC spectrum of step	hapierrine A (1) in $CDCl_3(2)$	14
S11. HMBC spectrum of stephapierrine A (1) in CDCl ₃	15
S12. Expansion of HMBC spectrum of step	hapierrine A (1) in $CDCl_3(1)$	15
S13. Expansion of HMBC spectrum of step	hapierrine A (1) in $CDCl_3(2)$	16
S14. Expansion of HMBC spectrum of step	hapierrine A (1) in $CDCl_3(3)$	16
S15. NOESY spectrum of stephapierrine A	(1) in CDCl ₃	17
S16. Expansion of NOESY spectrum of ste	phapierrine A (1) in CDCl ₃ (1)	17
S17. Expansion of NOESY spectrum of ste	phapierrine A (1) in CDCl ₃ (2)	18
S18. ESI-TOF-MS of stephapierrine A (1)		18
S19. IR spectrum of stephapierrine A (1)		19
S20. ¹ H NMR spectrum (CDCl ₃ , 400 MHz)	of stephapierrine B (2)	19
S21. Expansion of ¹ H NMR spectrum (CDC	Cl_3 , 400 MHz) of stephapierrine B (2) (1)	20
S22. Expansion of ¹ H NMR spectrum (CDC	Cl_3 , 400 MHz) of stephapierrine B (2) (2)	20
S23. ¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of stephapierrine B (2)	21
S24. DEPT135 spectrum (CDCl ₃ , 100 MHz	z) of stephapierrine B (2)	21
S25. COSY spectrum of stephapierrine B (2)	in CDCl ₃	22
S26. Expansion of COSY spectrum of steph	hapierrine B (2) in CDCl ₃	22
S27. HMQC spectrum of stephapierrine B (2) in CDCl ₃	23
S28. Expansion of HMQC spectrum of step	hapierrine B (2) in CDCl ₃ (1)	23
S29. Expansion of HMQC spectrum of step	hapierrine B (2) in CDCl ₃ (2)	24
S30. HMBC spectrum of stephapierrine B (2) in CDCl ₃	24
S31. Expansion of HMBC spectrum of step	hapierrine B (2) in $CDCl_3(1)$	25

Figure	Contents	Page
S32. Expansion of HMBC spectrum of s	tephapierrine B (2) in CDCl ₃ (2)	25
\$33. Expansion of HMBC spectrum of s	tephapierrine B (2) in CDCl ₃ (3)	26
\$34. NOESY spectrum of stephapierrine	B (2) in CDCl ₃	26
\$35. Expansion of NOESY spectrum of	stephapierrine B (2) in CDCl ₃ (1)	27
\$36. Expansion of NOESY spectrum of	stephapierrine B (2) in CDCl ₃ (2)	27
\$37. ESI-TOF-MS of stephapierrine B (2)	2)	28
\$38. IR spectrum of stephapierrine B (2)		28
\$39. ¹ H NMR spectrum (CDCl ₃ , 400 MI	Hz) of stephapierrine C (3)	29
S40. Expansion of ¹ H NMR spectrum (C	DCl_3 , 400 MHz) of stephapierrine C (3) (1)	29
S41. Expansion of ¹ H NMR spectrum (C	DCl_3 , 400 MHz) of stephapierrine C (3) (2)	30
S42. ¹³ C NMR spectrum (CDCl ₃ , 100 M	Hz) of stephapierrine C (3)	30
\$43. DEPT135 spectrum (CDCl ₃ , 100 M	Hz) of stephapierrine C (3)	31
\$44. COSY spectrum of stephapierrine C	C(3) in CDCl ₃	31
S45. Expansion of COSY spectrum of st	ephapierrine C (3) in CDCl ₃	32
S46. HMQC spectrum of stephapierrine	C (3) in CDCl ₃	32
S47. Expansion of HMQC spectrum of s	tephapierrine C (3) in CDCl ₃ (1)	33
S48. Expansion of HMQC spectrum of s	tephapierrine C (3) in CDCl ₃ (2)	33
S49. HMBC spectrum of stephapierrine	$C(3)$ in $CDCl_3$	34
\$50. Expansion of HMBC spectrum of s	tephapierrine C (3) in CDCl ₃ (1)	34
S51. Expansion of HMBC spectrum of s	tephapierrine C (3) in CDCl ₃ (2)	35
S52. NOESY spectrum of stephapierrine	C (3) in CDCl ₃	35
\$53. Expansion of NOESY spectrum of	stephapierrine C (3) in $CDCl_3(1)$	36
S54. Expansion of NOESY spectrum of	stephapierrine C (3) in $CDCl_3(2)$	36
\$55. ESI-TOF-MS of stephapierrine C (3)	37
S56. IR spectrum of stephapierrine C (3)		37
S57. ¹ H NMR spectrum (CD ₃ OD, 400 M	(Hz) of stephapierrine D (4)	38
\$58. Expansion of ¹ H NMR spectrum (C	D ₃ OD, 400 MHz) of stephapierrine D (4) (1)	38
\$59. Expansion of ¹ H NMR spectrum (C	D ₃ OD, 400 MHz) of stephapierrine D (4) (2)	39
S60. Expansion of ¹ H NMR spectrum (C	D ₃ OD, 400 MHz) of stephapierrine D (4) (3)	39
S61. ¹³ C NMR spectrum (CD ₃ OD, 100 M	(4) AHz) of stephapierrine D	40
S62. DEPT135 spectrum (CD ₃ OD, 100 N	MHz) of stephapierrine D (4)	40
S63. COSY spectrum of stephapierrine I	O(4) in CD ₃ OD	41
S64. Expansion of COSY spectrum of st	ephapierrine D (4) in CD ₃ OD	41

Figure Contents		Page
S65. Expansion of COSY spectrum of stephapierrine D	(4) in CD ₃ OD	42
S66. HMQC spectrum of stephapierrine D (4) in CD ₃ O	D	42
S67. Expansion of HMQC spectrum of stephapierrine D	O (4) in CD ₃ OD (1)	43
S68. Expansion of HMQC spectrum of stephapierrine D	O (4) in CD ₃ OD (2)	43
S69. HMBC spectrum of stephapierrine D (4) in CD ₃ Ol)	44
S70. Expansion of HMBC spectrum of stephapierrine D	0 (4) in CD ₃ OD (1)	44
S71. Expansion of HMBC spectrum of stephapierrine D	0 (4) in CD ₃ OD (2)	45
S72. Expansion of HMBC spectrum of stephapierrine D	O (4) in CD ₃ OD (3)	45
S73. Expansion of HMBC spectrum of stephapierrine D	0 (4) in CD ₃ OD (4)	46
S74. NOESY spectrum of stephapierrine D (4) in CD ₃ C	D	46
S75. Expansion of NOESY spectrum of stephapierrine	D (4) in CD ₃ OD (1)	47
S76. Expansion of NOESY spectrum of stephapierrine	D (4) in CD ₃ OD (2)	47
S77. ESI-TOF-MS of stephapierrine D (4)		48
S78. IR spectrum of stephapierrine D (4)		48
S79. ¹ H NMR spectrum (CD ₃ OD, 400 MHz) of stephap	ierrine E (5)	49
S80. Expansion of ¹ H NMR spectrum (CD ₃ OD, 400 MI	Hz) of stephapierrine E (5) (1)	49
S81. Expansion of ¹ H NMR spectrum (CD ₃ OD, 400 MI	Hz) of stephapierrine E (5) (2)	50
S82. ¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of stephap	pierrine E (5)	50
S83. DEPT135 spectrum (CD ₃ OD, 100 MHz) of stepha	pierrine E (5)	51
S84. COSY spectrum of stephapierrine E (5) in CD ₃ OD)	51
S85. Expansion of COSY spectrum of stephapierrine E	(5) in CD ₃ OD (1)	52
S86. Expansion of COSY spectrum of stephapierrine E	(5) in CD ₃ OD (2)	52
S87. HMQC spectrum of stephapierrine E (5) in CD ₃ OI)	53
S88. Expansion of HMQC spectrum of stephapierrine E	E (5) in CD ₃ OD (1)	53
S89. Expansion of HMQC spectrum of stephapierrine E	E (5) in CD ₃ OD (2)	54
S90. HMBC spectrum of stephapierrine E (5) in CD ₃ OI)	54
S91. Expansion of HMBC spectrum of stephapierrine E	(5) in CD ₃ OD (1)	55
S92. Expansion of HMBC spectrum of stephapierrine E	(5) in CD ₃ OD (2)	55
S93. Expansion of HMBC spectrum of stephapierrine E	(5) in CD ₃ OD (3)	56
S94. NOESY spectrum of stephapierrine E (5) in CD ₃ O	D	56
S95. Expansion of NOESY spectrum of stephapierrine	$E(5)$ in CD_3OD	57
S96. ESI-TOF-MS of stephapierrine E (5)		57
S97. IR spectrum of stephapierrine E (5)		58

_	
-	
_	
\sim	

Figure	Contents	Page
S98. ¹ H NMR spectre	um (CD ₃ OD, 400 MHz) of stephapierrine F (6)	58
S99. Expansion of ¹ H	I NMR spectrum (CD ₃ OD, 400 MHz) of stephapierrine F (6) (1)	59
S100. Expansion of ¹	H NMR spectrum (CD ₃ OD, 400 MHz) of stephapierrine F (6) (2)	59
S101. Expansion of ¹	H NMR spectrum (CD ₃ OD, 400 MHz) of stephapierrine F (6) (3)	60
S102. ¹³ C NMR spec	trum (CD ₃ OD, 100 MHz) of stephapierrine F (6)	60
S103. DEPT135 spec	ctrum (CD ₃ OD, 100 MHz) of stephapierrine F (6)	61
S104. COSY spectru	m of stephapierrine F (6) in CD ₃ OD	61
S105. Expansion of G	COSY spectrum of stephapierrine F (6) in CD ₃ OD (1)	62
S106. Expansion of G	COSY spectrum of stephapierrine F (6) in CD ₃ OD (2)	62
S107. HMQC spectru	um of stephapierrine F (6) in CD ₃ OD	63
S108. Expansion of H	HMQC spectrum of stephapierrine F (6) in CD ₃ OD (1)	63
S109. Expansion of H	HMQC spectrum of stephapierrine F (6) in CD ₃ OD (2)	64
S110. HMBC spectru	um of stephapierrine F (6) in CD ₃ OD	64
S111. Expansion of H	HMBC spectrum of stephapierrine F (6) in CD ₃ OD (1)	65
S112. Expansion of H	HMBC spectrum of stephapierrine F (6) in CD ₃ OD (2)	65
S113. Expansion of H	HMBC spectrum of stephapierrine F (6) in CD ₃ OD (3)	66
S114. Expansion of H	HMBC spectrum of stephapierrine F (6) in CD ₃ OD (4)	66
S115. NOESY spectr	rum of stephapierrine F (6) in CD ₃ OD	67
S116. Expansion of M	NOESY spectrum of stephapierrine F (6) in CD ₃ OD (1)	67
S117. Expansion of M	NOESY spectrum of stephapierrine F (6) in CD ₃ OD (2)	68
S118. ESI-TOF-MS	of stephapierrine F (6)	68
S119. IR spectrum of	f stephapierrine F (6)	69
S120. ¹ H NMR spect	rum (CD ₃ OD, 400 MHz) of stephapierrine G (7)	69
S121. Expansion of ¹	H NMR spectrum (CD ₃ OD, 400 MHz) of stephapierrine G (7) (1)	70
S122. Expansion of ¹	H NMR spectrum (CD ₃ OD, 400 MHz) of stephapierrine G (7) (2)	70
S123. ¹³ C NMR spec	trum (CD ₃ OD, 100 MHz) of stephapierrine G (7)	71
S124. DEPT135 spec	ctrum (CD ₃ OD, 100 MHz) of stephapierrine G (7)	71
S125. COSY spectru	m of stephapierrine G (7) in CD ₃ OD	72
S126. HMQC spectru	um of stephapierrine G (7) in CD ₃ OD	72
S127. HMBC spectru	um of stephapierrine G (7) in CD ₃ OD	73
S128. Expansion of I	HMBC spectrum of stephapierrine G (7) in CD ₃ OD	73
S129. NOESY spectr	rum of stephapierrine G (7) in CD ₃ OD	74
S130. ESI-TOF-MS	of stephapierrine G (7)	74

Figure Contents	Page
S131. IR spectrum of stephapierrine G (7)	75
S132. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of stephapierrine H (8)	75
S133. Expansion of ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of stephapierrine H (8) (1)	76
S134. Expansion of ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of stephapierrine H (8) (2)	76
S135. ¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of stephapierrine H (8)	77
\$136. DEPT135 spectrum (CDCl ₃ , 100 MHz) of stephapierrine H (8)	77
\$137. COSY spectrum of stephapierrine H (8) in CDCl ₃	78
\$138. HMQC spectrum of stephapierrine H (8) in CDCl ₃	78
S139. Expansion of HMQC spectrum of stephapierrine H (8) in $CDCl_3$	79
S140. HMBC spectrum of stephapierrine H (8) in CDCl ₃	79
S141. Expansion of HMBC spectrum of stephapierrine H (8) in CDCl ₃	80
S142. NOESY spectrum of stephapierrine H (8) in CDCl ₃	80
S143. ESI-TOF-MS of stephapierrine H (8)	81
S144. IR spectrum of stephapierrine H (8)	81
S145. ¹ H NMR spectrum (CD ₃ OD, 400 MHz) of <i>O</i> , <i>N</i> -diacetylasimilobine (9)	82
S146. ¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of <i>O</i> , <i>N</i> -diacetylasimilobine (9)	82
\$147. DEPT135 spectrum (CD ₃ OD, 100 MHz) of <i>O</i> , <i>N</i> -diacetylasimilobine (9)	83
\$148. COSY spectrum of <i>O</i> , <i>N</i> -diacetylasimilobine (9) in CD ₃ OD	83
\$149. HMQC spectrum of <i>O</i> , <i>N</i> -diacetylasimilobine (9) in CD ₃ OD	84
\$150. HMBC spectrum of <i>O</i> , <i>N</i> -diacetylasimilobine (9) in CD ₃ OD	84
\$151. NOESY spectrum of <i>O</i> , <i>N</i> -diacetylasimilobine (9) in CD ₃ OD	85
\$152. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of <i>N</i> -acetamidesecocrebanine (10)	85
S153. ¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of <i>N</i> -acetamidesecocrebanine (10)	86
\$154. DEPT135 spectrum (CDCl ₃ , 100 MHz) of <i>N</i> -acetamidesecocrebanine (10)	86
\$155. COSY spectrum of <i>N</i> -acetamidesecocrebanine (10) in CDCl ₃	87
S156. HMQC spectrum of N -acetamidesecocrebanine (10) in CDCl ₃	87
S157. HMBC spectrum of N -acetamidesecocrebanine (10) in CDCl ₃	88
\$158. NOESY spectrum of <i>N</i> -acetamidesecocrebanine (10) in CDCl ₃	88
\$159. ¹ H NMR spectrum (DMSO- <i>d</i> ₆ , 400 MHz) of 2,3-didemethyltetrahydropalmatine (11)	89
S160. ¹³ C NMR spectrum (DMSO- <i>d</i> ₆ , 100 MHz) of 2,3-didemethyltetrahydropalmatine (11)	89
S161. DEPT135 spectrum (DMSO- d_6 , 100 MHz) of 2,3-didemethyltetrahydropalmatine (11)	90
S162. COSY spectrum of 2,3-didemethyltetrahydropalmatine (11) in DMSO- d_6	90
S163. HMQC spectrum of 2,3-didemethyltetrahydropalmatine (11) in DMSO- d_6	91

Figure	Contents	Page
S164. HMBC spectrun	n of 2,3-didemethyltetrahydropalmatine (11) in DMSO- d_6	91
S165. NOESY spectru	m of 2,3-didemethyltetrahydropalmatine (11) in DMSO- d_6	92
S166. ¹ H NMR spectru	um (CD ₃ OD, 400 MHz) of stepholidine (12)	92
S167. ¹³ C NMR spectr	um (CD ₃ OD, 100 MHz) of stepholidine (12)	93
S168. ¹ H NMR spectru	m (CD ₃ OD, 400 MHz) of discretamine (13)	93
S169. ¹³ C NMR spectr	um (CD ₃ OD, 100 MHz) of discretamine (13)	94
S170. ¹ H NMR spectru	um (CDCl ₃ , 400 MHz) of tetrahydropalmatine (14)	94
S171. ¹³ C NMR spectr	um (CDCl ₃ , 100 MHz) of tetrahydropalmatine (14)	95
S172. ¹ H NMR spectru	um (CD ₃ OD, 400 MHz) of <i>N</i> -methylstepholidine (15)	95
S173. ¹³ C NMR spectr	um (CD ₃ OD, 100 MHz) of <i>N</i> -methylstepholidine (15)	96
S174. ¹ H NMR spectru	um (CD ₃ OD, 400 MHz) of cyclanoline (16)	96
S175. ¹³ C NMR spectr	um (CD ₃ OD, 100 MHz) of cyclanoline (16)	97
S176. ¹ H NMR spectru	um (CDCl ₃ + 5 drops CD ₃ OD, 400 MHz) of <i>N</i> -methyltetrahydro-	97
palmatine (17)		
S177. ¹³ C NMR spectr	um (CDCl ₃ + 5 drops CD ₃ OD, 100 MHz) of <i>N</i> -methyltetrahydro-	98
palmatine (17)		
S178. ¹ H NMR spectru	um (CD ₃ OD, 400 MHz) of jatrorrhizine (18)	98
S179. ¹³ C NMR spectr	um (CD ₃ OD, 100 MHz) of jatrorrhizine (18)	99
S180. ¹ H NMR spectru	um (DMSO- <i>d</i> ₆ , 400 MHz) of palmatine (19)	99
S181. ¹³ C NMR spectr	um (DMSO- d_6 , 100 MHz) of palmatine (19)	100
S182. ¹ H NMR spectru	um (CDCl ₃ , 400 MHz) of dehydrocorydaline (20)	100
S183. ¹³ C NMR spectr	um (CDCl ₃ , 100 MHz) of dehydrocorydaline (20)	101
S184. ¹ H NMR spectru	um (CD ₃ OD, 400 MHz) of pseudodehydrocorydaline (21)	101
S185. ¹³ C NMR spectr	um (CD ₃ OD, 100 MHz) of pseudodehydrocorydaline (21)	102
S186. ¹ H NMR spectru	um (CDCl ₃ , 400 MHz) of roemerine (22)	102
S187. ¹³ C NMR spectr	um (CDCl ₃ , 100 MHz) of roemerine (22)	103
S188. ¹ H NMR spectru	um (CDCl ₃ , 400 MHz) of (-)-stephanine (23)	103
S189. ¹³ C NMR spectr	um (CDCl ₃ , 100 MHz) of (–)-stephanine (23)	104
S190. ¹ H NMR spectru	um (CDCl ₃ , 400 MHz) of (-)-isolaureline (24)	104
S191. ¹³ C NMR spectr	um (CDCl ₃ , 100 MHz) of (-)-isolaureline (24)	105
S192. ¹ H NMR spectru	um (CDCl ₃ , 400 MHz) of crebanine (25)	105
S193. ¹³ C NMR spectr	um (CDCl ₃ , 100 MHz) of crebanine (25)	106
S194 ¹ H NMR spectra	$m (CDCl_3 + 5 drops CD_3OD, 400 MHz) of dicentrine (26)$	106

Figure	e Contents	Page
S195.	¹³ C NMR spectrum (CDCl ₃ + 5 drops CD ₃ OD, 100 MHz) of dicentrine (26)	107
S196.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of (-)-ushinsunine (27)	107
S197.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of (-)-ushinsunine (27)	108
S198.	¹ H NMR spectrum (CD ₃ OD, 400 MHz) of (-)-ayuthianine (28)	108
S199.	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of (-)-ayuthianine (28)	109
S200.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of sukhodianine (29)	109
S201.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of sukhodianine (29)	110
S202.	¹ H NMR spectrum (Acetone- <i>d</i> ₆ , 400 MHz) of (–)- <i>N</i> -fonnylanonaine (30)	110
S203.	¹³ C NMR spectrum (Acetone- <i>d</i> ₆ , 100 MHz) of (–)- <i>N</i> -fonnylanonaine (30)	111
S204.	¹ H NMR spectrum (CD ₃ OD, 400 MHz) of (-)- <i>N</i> -methylasimilobine (31)	111
S205.	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of (-)- <i>N</i> -methylasimilobine (31)	112
S206.	¹ H NMR spectrum (CD ₃ OD, 400 MHz) of (-)-asimilobine (32)	112
S207.	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of (-)-asimilobine (32)	113
S208.	¹ H NMR spectrum (CD ₃ OD, 400 MHz) of (–)-asimilobine-2- <i>O</i> -β-D-glucoside (33)	113
S209.	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of (–)-asimilobine-2- <i>O</i> -β-D-glucoside (33)	114
S210.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of lanuginosine (34)	114
S211.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of lanuginosine (34)	115
S212.	¹ H NMR spectrum (CDCl ₃ + 5 drops CD ₃ OD, 400 MHz) of dicentrinone (35)	115
S213	¹³ C NMR spectrum (CDCl ₃ + 5 drops CD ₃ OD, 100 MHz) of dicentrinone (35)	116
S214.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of oxocrebanine (36)	116
S215.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of oxocrebanine (36)	117
S216.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of 8-methoxyuvoriopsine (37)	117
S217.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of 8-methoxyuvoriopsine (37)	118
S218.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of dehydroroemerine (38)	118
S219.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of dehydroroemerine (38)	119
S220.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of dehydrostephanine (39)	119
S221.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of dehydrostephanine (39)	120
S222.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of dehydroisolaureline (40)	120
S223.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of dehydroisolaureline (40)	121
S224.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of dehydrocrebanine (41)	121
S225.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of dehydrocrebanine (41)	122
S226.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of dehydrodicentrine (42)	122
S227.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of dehydrodicentrine (42)	123

Figur	e Contents	Page
S228.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of (–)-crebanine-β- <i>N</i> -oxide (43)	123
S229.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of (–)-crebanine-β- <i>N</i> -oxide (43)	124
S230.	¹ H NMR spectrum (CD ₃ OD, 400 MHz) of coclaurine (44)	124
S231.	¹³ C NMR spectrum (CD ₃ OD, 100 MHz) of coclaurine (44)	125
S232.	¹ H NMR spectrum (CDCl ₃ , 400 MHz) of salutaridine (45)	125
S233.	¹³ C NMR spectrum (CDCl ₃ , 100 MHz) of salutaridine (45)	126
S234.	ECD spectra of stephapierrines A-D (1-4)	126
S235.	ECD spectra of stephapierrines E-F (5-6) and O,N-diacetylasimilobine (9)	127

List of Table

Table	Contents	Page
S1. Cholinesterase inhibitory activit	ies of aporphine alkaloids	128

Figure S2. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine A (1) (1)

Figure S3. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine A (1) (2)

Figure S4. ¹³C NMR spectrum (CDCl₃, 100 MHz) of stephapierrine A (1)

Figure S5. DEPT135 spectrum (CDCl₃, 100 MHz) of stephapierrine A (1)

Figure S6. COSY spectrum of stephapierrine A (1) in CDCl₃

Figure S7. Expansion of COSY spectrum of stephapierrine A (1) in CDCl₃

Figure S8. HMQC spectrum of stephapierrine A (1) in CDCl₃

Figure S9. Expansion of HMQC spectrum of stephapierrine A (1) in CDCl₃(1)

Figure S10. Expansion of HMQC spectrum of stephapierrine A (1) in CDCl₃(2)

Figure S11. HMBC spectrum of stephapierrine A (1) in CDCl₃

Figure S12. Expansion of HMBC spectrum of stephapierrine A (1) in CDCl₃(1)

Figure S13. Expansion of HMBC spectrum of stephapierrine A (1) in CDCl₃(2)

Figure S14. Expansion of HMBC spectrum of stephapierrine A (1) in CDCl₃(3)

Figure S15. NOESY spectrum of stephapierrine A (1) in CDCl₃

Figure S16. Expansion of NOESY spectrum of stephapierrine A (1) in CDCl₃(1)

Figure S17. Expansion of NOESY spectrum of stephapierrine A (1) in CDCl₃(2)

Figure S18. ESI-TOF-MS of stephapierrine A (1)

Figure S19. IR spectrum of stephapierrine A (1)

Figure S20. ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine B (2)

Figure S21. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine B (2) (1)

Figure S22. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine B (2) (2)

Figure S23. ¹³C NMR spectrum (CDCl₃, 100 MHz) of stephapierrine B (2)

Figure S24. DEPT135 spectrum (CDCl₃, 100 MHz) of stephapierrine B (2)

Figure S25. COSY spectrum of stephapierrine B (2) in CDCl₃

Figure S26. Expansion of COSY spectrum of stephapierrine B (2) in CDCl₃

Figure S27. HMQC spectrum of stephapierrine B (2) in CDCl₃

Figure S28. Expansion of HMQC spectrum of stephapierrine B (2) in CDCl₃(1)

Figure S29. Expansion of HMQC spectrum of stephapierrine B (2) in CDCl₃(2)

Figure S30. HMBC spectrum of stephapierrine B (2) in CDCl₃

Figure S31. Expansion of HMBC spectrum of stephapierrine B (2) in CDCl₃(1)

Figure S32. Expansion of HMBC spectrum of stephapierrine B (2) in CDCl₃(2)

Figure S33. Expansion of HMBC spectrum of stephapierrine B (2) in CDCl₃ (3)

Figure S34. NOESY spectrum of stephapierrine B (2) in CDCl₃

Figure S35. Expansion of NOESY spectrum of stephapierrine B (2) in CDCl₃(1)

Figure S36. Expansion of NOESY spectrum of stephapierrine B (2) in CDCl₃(2)

Figure S37. ESI-TOF-MS of stephapierrine B (2)

Figure S38. IR spectrum of stephapierrine B (2)

Figure S39. ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine C (3)

Figure S40. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine C (3) (1)

Figure S41. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine C (3) (2)

Figure S42. ¹³C NMR spectrum (CDCl₃, 100 MHz) of stephapierrine C (3)

Figure S43. DEPT135 spectrum (CDCl₃, 100 MHz) of stephapierrine C (3)

Figure S44. COSY spectrum of stephapierrine C (3) in CDCl₃

Figure S45. Expansion of COSY spectrum of stephapierrine C (3) in CDCl₃

Figure S46. HMQC spectrum of stephapierrine C (3) in CDCl₃

Figure S47. Expansion of HMQC spectrum of stephapierrine C (3) in CDCl₃(1)

Figure S48. Expansion of HMQC spectrum of stephapierrine C (3) in CDCl₃(2)

Figure S49. HMBC spectrum of stephapierrine C (3) in CDCl₃

Figure S50. Expansion of HMBC spectrum of stephapierrine C (3) in CDCl₃(1)

Figure S51. Expansion of HMBC spectrum of stephapierrine C (3) in CDCl₃(2)

Figure S52. NOESY spectrum of stephapierrine C (3) in CDCl₃

Figure S53. Expansion of NOESY spectrum of stephapierrine C (3) in CDCl₃(1)

Figure S54. Expansion of NOESY spectrum of stephapierrine C (3) in CDCl₃(2)

Figure S55. ESI-TOF-MS of stephapierrine C (3)

Figure S56. IR spectrum of stephapierrine C (3)

Figure S57. ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine D (4)

Figure S58. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine D (4) (1)

Figure S59. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine D (4) (2)

Figure S60. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine D (4) (3)

Figure S61. ¹³C NMR spectrum (CD₃OD, 100 MHz) of stephapierrine D (4)

Figure S62. DEPT135 spectrum (CD₃OD, 100 MHz) of stephapierrine D (4)

Figure S63. COSY spectrum of stephapierrine D (4) in CD₃OD

Figure S64. Expansion of COSY spectrum of stephapierrine D (4) in CD₃OD (1)

Figure S65. Expansion of COSY spectrum of stephapierrine D (4) in CD₃OD (2)

Figure S66. HMQC spectrum of stephapierrine D (4) in CD₃OD

Figure S67. Expansion of HMQC spectrum of stephapierrine D (4) in CD₃OD (1)

Figure S68. Expansion of HMQC spectrum of stephapierrine D (4) in CD₃OD (2)

Figure S69. HMBC spectrum of stephapierrine D (4) in CD₃OD

Figure S70. Expansion of HMBC spectrum of stephapierrine D (4) in CD₃OD (1)

Figure S71. Expansion of HMBC spectrum of stephapierrine D (4) in CD₃OD (2)

Figure S72. Expansion of HMBC spectrum of stephapierrine D (4) in CD₃OD (3)

Figure S73. Expansion of HMBC spectrum of stephapierrine D (4) in CD₃OD (4)

Figure S74. NOESY spectrum of stephapierrine D (4) in CD₃OD

Figure S75. Expansion of NOESY spectrum of stephapierrine D (4) in CD₃OD (1)

Figure S76. Expansion of NOESY spectrum of stephapierrine D (4) in CD₃OD (2)

Figure S77. ESI-TOF-MS of stephapierrine D (4)

Figure S78. IR spectrum of stephapierrine D (4)

Figure S79. ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine E (5)

Figure S80. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine E (5) (1)

Figure S81. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine E (5) (2)

Figure S82. ¹³C NMR spectrum (CD₃OD, 100 MHz) of stephapierrine E (5)

Figure S83. DEPT135 spectrum (CD₃OD, 100 MHz) of stephapierrine E (5)

Figure S84. COSY spectrum of stephapierrine E (5) in CD₃OD

Figure S85. Expansion of COSY spectrum of stephapierrine E (5) in CD₃OD (1)

Figure S86. Expansion of COSY spectrum of stephapierrine E (5) in CD₃OD (2)

Figure S87. HMQC spectrum of stephapierrine E (5) in CD₃OD

Figure S88. Expansion of HMQC spectrum of stephapierrine E (5) in CD₃OD (1)

Figure S89. Expansion of HMQC spectrum of stephapierrine E (5) in CD₃OD (2)

Figure S90. HMBC spectrum of stephapierrine E (5) in CD₃OD

Figure S91. Expansion of HMBC spectrum of stephapierrine E (5) in CD₃OD (1)

Figure S92. Expansion of HMBC spectrum of stephapierrine E (5) in CD₃OD (2)

Figure S93. Expansion of HMBC spectrum of stephapierrine E (5) in CD₃OD (3)

Figure S94. NOESY spectrum of stephapierrine E (5) in CD₃OD

Figure S95. Expansion of NOESY spectrum of stephapierrine E (5) in CD₃OD

Figure S96. ESI-TOF-MS of stephapierrine E (5)

Figure S97. IR spectrum of stephapierrine E (5)

Figure S98. ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine F (6)

Figure S99. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine F (6) (1)

Figure S100. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine F (6) (2)

Figure S101. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine F (6) (3)

Figure S102. ¹³C NMR spectrum (CD₃OD, 100 MHz) of stephapierrine F (6)

Figure S103. DEPT135 spectrum (CD₃OD, 100 MHz) of stephapierrine F (6)

Figure S104. COSY spectrum of stephapierrine F (6) in CD₃OD

Figure S105. Expansion of COSY spectrum of stephapierrine F (6) in CD₃OD (1)

Figure S106. Expansion of COSY spectrum of stephapierrine F (6) in CD₃OD (2)

Figure S107. HMQC spectrum of stephapierrine F (6) in CD₃OD

Figure S108. Expansion of HMQC spectrum of stephapierrine F (6) in CD₃OD (1)

Figure S109. Expansion of HMQC spectrum of stephapierrine F (6) in CD₃OD (2)

Figure S110. HMBC spectrum of stephapierrine F (6) in CD₃OD

Figure S111. Expansion of HMBC spectrum of stephapierrine F (6) in CD₃OD (1)

Figure S112. Expansion of HMBC spectrum of stephapierrine F (6) in CD₃OD (2)

Figure S113. Expansion of HMBC spectrum of stephapierrine F (6) in CD₃OD (3)

Figure S114. Expansion of HMBC spectrum of stephapierrine F (6) in CD₃OD (4)

Figure S115. NOESY spectrum of stephapierrine F (6) in CD₃OD

Figure S116. Expansion of NOESY spectrum of stephapierrine F (6) in CD₃OD (1)

Figure S117. Expansion of NOESY spectrum of stephapierrine F (6) in CD₃OD (2)

Figure S118. ESI-TOF-MS of stephapierrine F (6)

Figure S119. IR spectrum of stephapierrine F (6)

Figure S120. ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine G (7)

Figure S121. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine G (7) (1)

Figure S122. Expansion of ¹H NMR spectrum (CD₃OD, 400 MHz) of stephapierrine G (7) (2)

Figure S123. ¹³C NMR spectrum (CD₃OD, 100 MHz) of stephapierrine G (7)

Figure S124. DEPT135 spectrum (CD₃OD, 100 MHz) of stephapierrine G (7)

Figure S125. COSY spectrum of stephapierrine G (7) in CD₃OD

Figure S126. HMQC spectrum of stephapierrine G (7) in CD₃OD

Figure S127. HMBC spectrum of stephapierrine G (7) in CD₃OD

Figure S128. Expansion of HMBC spectrum of stephapierrine G (7) in CD₃OD

Figure S130. ESI-TOF-MS of stephapierrine G (7)

Figure S131. IR spectrum of stephapierrine G (7)

Figure S132. ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine H (8)

Figure S133. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine H (8) (1)

Figure S134. Expansion of ¹H NMR spectrum (CDCl₃, 400 MHz) of stephapierrine H (8) (2)

76

Figure S135. ¹³C NMR spectrum (CDCl₃, 100 MHz) of stephapierrine H (8)

Figure S136. DEPT135 spectrum (CDCl₃, 100 MHz) of stephapierrine H (8)

Figure S137. COSY spectrum of stephapierrine H (8) in CDCl₃

Figure S138. HMQC spectrum of stephapierrine H (8) in CDCl₃

Figure S139. Expansion of HMQC spectrum of stephapierrine H (8) in CDCl₃

Figure S140. HMBC spectrum of stephapierrine H (8) in CDCl₃

Figure S141. Expansion of HMBC spectrum of stephapierrine H (8) in CDCl₃

Figure S142. NOESY spectrum of stephapierrine H (8) in CDCl₃

Figure S143. ESI-TOF-MS of stephapierrine H (8)

Figure S144. IR spectrum of stephapierrine H (8)

Figure S145. ¹H NMR spectrum (CD₃OD, 400 MHz) of *O*,*N*-diacetylasimilobine (9)

Figure S146. ¹³C NMR spectrum (CD₃OD, 100 MHz) of *O*,*N*-diacetylasimilobine (9)

Figure S147. DEPT135 spectrum (CD₃OD, 100 MHz) of O,N-diacetylasimilobine (9)

Figure S148. COSY spectrum of O,N-diacetylasimilobine (9) in CD₃OD

Figure S149. HMQC spectrum of O,N-diacetylasimilobine (9) in CD₃OD

Figure S150. HMBC spectrum of O,N-diacetylasimilobine (9) in CD₃OD

Figure S151. NOESY spectrum of O,N-diacetylasimilobine (9) in CD₃OD

Figure S152. ¹H NMR spectrum (CDCl₃, 400 MHz) of *N*-acetamidesecocrebanine (10)

Figure S154. DEPT135 spectrum (CDCl₃, 100 MHz) of N-acetamidesecocrebanine (10)

Figure S155. COSY spectrum of N-acetamidesecocrebanine (10) in CDCl₃

Figure S156. HMQC spectrum of N-acetamidesecocrebanine (10) in CDCl₃

Figure S157. HMBC spectrum of N-acetamidesecocrebanine (10) in CDCl₃

Figure S158. NOESY spectrum of N-acetamidesecocrebanine (10) in CDCl₃

didemethyltetrahydropalmatine (11)

Figure S160. ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of 2,3-

didemethyltetrahydropalmatine (11)

Figure S161. DEPT135 spectrum (DMSO-*d*₆, 100 MHz) of 2,3-

didemethyltetrahydropalmatine (11)

Figure S162. COSY spectrum of 2,3-didemethyltetrahydropalmatine (11) in DMSO-d₆

Figure S163. HMQC spectrum of 2,3-didemethyltetrahydropalmatine (11) in DMSO-d₆

Figure S164. HMBC spectrum of 2,3-didemethyltetrahydropalmatine (11) in DMSO-d₆

Figure S165. NOESY spectrum of 2,3-didemethyltetrahydropalmatine (11) in DMSO-d₆

Figure S166. ¹H NMR spectrum (CD₃OD, 400 MHz) of stepholidine (12)

Figure S167. ¹³C NMR spectrum (CD₃OD, 100 MHz) of stepholidine (12)

Figure S168. ¹H NMR spectrum (CD₃OD, 400 MHz) of discretamine (13)

Figure S170. ¹H NMR spectrum (CDCl₃, 400 MHz) of tetrahydropalmatine (14)

Figure S171. ¹³C NMR spectrum (CDCl₃, 100 MHz) of tetrahydropalmatine (14)

Figure S172. ¹H NMR spectrum (CD₃OD, 400 MHz) of *N*-methylstepholidine (15)

Figure S173. ¹³C NMR spectrum (CD₃OD, 100 MHz) of *N*-methylstepholidine (15)

Figure S174. ¹H NMR spectrum (CD₃OD, 400 MHz) of cyclanoline (16)

Figure S176. ¹H NMR spectrum (CDCl₃ + 5 drops CD₃OD, 400 MHz) of *N*-methyltetrahydro-palmatine (17)

Figure S177. ¹³C NMR spectrum (CDCl₃ + 5 drops CD₃OD, 100 MHz) of N-

methyltetrahydro-palmatine (17)

Figure S178. ¹H NMR spectrum (CD₃OD, 400 MHz) of jatrorrhizine (18)

Figure S182. ¹H NMR spectrum (CDCl₃, 400 MHz) of dehydrocorydaline (20)

Figure S183. ¹³C NMR spectrum (CDCl₃, 100 MHz) of dehydrocorydaline (20)

Figure S184. ¹H NMR spectrum (CD₃OD, 400 MHz) of pseudodehydrocorydaline (21)

Figure S185. ¹³C NMR spectrum (CD₃OD, 100 MHz) of pseudodehydrocorydaline (21)

Figure S186. ¹H NMR spectrum (CDCl₃, 400 MHz) of roemerine (22)

Figure S188. ¹H NMR spectrum (CDCl₃, 400 MHz) of (-)-stephanine (23)

Figure S190. ¹H NMR spectrum (CDCl₃, 400 MHz) of (-)-isolaureline (24)

Figure S191. ¹³C NMR spectrum (CDCl₃, 100 MHz) of (-)-isolaureline (24)

Figure S192. ¹H NMR spectrum (CDCl₃, 400 MHz) of crebanine (25)

Figure S194. ¹H NMR spectrum (CDCl₃ + 5 drops CD₃OD, 400 MHz) of dicentrine (26)

Figure S195. ¹³C NMR spectrum (CDCl₃ + 5 drops CD₃OD, 100 MHz) of dicentrine (26)

Figure S196. ¹H NMR sectrum (CDCl₃, 400 MHz) of (-)-ushinsunine (27)

Figure S197. ¹³C NMR spectrum (CDCl₃, 100 MHz) of (-)-ushinsunine (27)

Figure S198. ¹H NMR spectrum (CD₃OD, 400 MHz) of (-)-ayuthianine (28)

Figure S200. ¹H NMR spectrum (CDCl₃, 400 MHz) of sukhodianine (29)

Figure S201. ¹³C NMR spectrum (CDCl₃, 100 MHz) of sukhodianine (29)

Figure S202. ¹H NMR spectrum (Acetone-*d*₆, 400 MHz) of (–)-*N*-fonnylanonaine (30)

Figure S203. ¹³C NMR spectrum (Acetone-*d*₆, 100 MHz) of (–)-*N*-fonnylanonaine (30)

Figure S204. ¹H NMR spectrum (CD₃OD, 400 MHz) of (-)-*N*-methylasimilobine (31)

Figure S205. ¹³C NMR spectrum (CD₃OD, 100 MHz) of (-)-*N*-methylasimilobine (31)

Figure S206. ¹H NMR spectrum (CD₃OD, 400 MHz) of (-)-asimilobine (32)

Figure S207. ¹³C NMR spectrum (CD₃OD, 100 MHz) of (-)-asimilobine (32)

Figure S208. ¹H NMR spectrum (CD₃OD, 400 MHz) of (-)-asimilobine-2-O-β-D-

glucoside (33)

Figure S209. ¹³C NMR spectrum (CD₃OD, 100 MHz) of (–)-asimilobine-2-O-β-D-

Figure S210. ¹H NMR spectrum (CDCl₃, 400 MHz) of lanuginosine (34)

Figure S212. ¹H NMR spectrum (CDCl₃ + 5 drops CD₃OD, 400 MHz) of dicentrinone (35)

Figure S213. ¹³C NMR spectrum (CDCl₃ + 5 drops CD₃OD, 100 MHz) of dicentrinone (35)

Figure S214. ¹H NMR spectrum (CDCl₃, 400 MHz) of oxocrebanine (36)

Figure S216. ¹H NMR spectrum (CDCl₃, 400 MHz) of 8-methoxyuvoriopsine (37)

Figure S217. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 8-methoxyuvoriopsine (37)

Figure S218. ¹H NMR spectrum (CDCl₃, 400 MHz) of dehydroroemerine (38)

Figure S219. ¹³C NMR spectrum (CDCl₃, 100 MHz) of dehydroroemerine (38)

Figure S220. ¹H NMR spectrum (CDCl₃, 400 MHz) of dehydrostephanine (39)

Figure S221. ¹³C NMR spectrum (CDCl₃, 100 MHz) of dehydrostephanine (39)

Figure S222. ¹H NMR spectrum (CDCl₃, 400 MHz) of dehydroisolaureline (40)

Figure S223. ¹³C NMR spectrum (CDCl₃, 100 MHz) of dehydroisolaureline (40)

Figure S224. ¹H NMR spectrum (CDCl₃, 400 MHz) of dehydrocrebanine (41)

Figure S226. ¹H NMR spectrum (CDCl₃, 400 MHz) of dehydrodicentrine (42)

Figure S227. ¹³C NMR spectrum (CDCl₃, 100 MHz) of dehydrodicentrine (42)

Figure S228. ¹H NMR spectrum (CDCl₃, 400 MHz) of (–)-crebanine-β-N-oxide (43)

Figure S229. ¹³C NMR spectrum (CDCl₃, 100 MHz) of (–)-crebanine-β-N-oxide (43)

Figure S230. ¹H NMR spectrum (CD₃OD, 400 MHz) of coclaurine (44)

Figure S231. ¹³C NMR spectrum (CD₃OD, 100 MHz) of coclaurine (44)

Figure S232. ¹H NMR spectrum (CDCl₃, 400 MHz) of salutaridine (45)

Figure S233. ¹³C NMR spectrum (CDCl₃, 100 MHz) of salutaridine (45)

Figure S234. ECD spectra of stephapierrines A-D (1-4).

Figure S235. ECD spectra of stephapierrines E-F (5-6) and *O*,*N*-diacetylasimilobine (9).

	$ \begin{array}{c} 0 & 2 & 3 & 3a & 4 \\ 0 & 1 & 1b & 6a & N \\ 11 & 11a & 7 & H & CH_3 \\ 11 & 7a & H & CH_3 \\ 10 & 9 & 8 & 8 \\ \end{array} $ 22	о – – – – – – – – – – – – – – – – – – –	O O O O H CH ₃ CH ₃ 24	O O H CH ₃ O CH ₃ 25	о н ₃ со ОСН ₃ 26	⁰ ^N ^H ^N ^H ^O ^N ^H ^O ^N ^H ^O ^N ^H ^O ^N ^H ^O ^N ^H ^O ^N ^H ^O ^N ^O ^N ^H ^O ^N ^N ^H ^O ^N ^N ^N ^N ^N ^N ^N ^N	HO H ₃ CO H ^N H H ³ H
AChE ^a	8.32 ± 0.12	11.34 ± 0.20	11.94 ± 0.39	17.37 ± 0.22	6.11 ± 0.38	$140.15{\pm}~0.83$	141.47 ± 0.82
BuChE ^a	2.85 ± 0.08	2.80 ± 0.07	16.58 ± 0.54	10.51 ± 0.27	26.41 ± 0.43	inactive ^b	10.08 ± 0.15
	о о н СН ₃ У ОН 27	о о С С Н С Н ₃ С Н ₃ С Н С С Н С С Н С С Н С С Н С С Н С С Н С С С Н С С С С С Н С С С С С С С С С С С С С		CH ₃ 29			
AChE ^a	17.63 ± 0.67	6.12 ± 0.63		4.30 ± 0.28			
BuChE ^a	7.42 ± 0.16	5.87 ± 0.06		22.47 ± 0.10			
	о с с с с с н ₃ С н ₃ С н ₃	от СН ₃ ОСН ₃ 39	он сна осна осна 40	O O O O CH ₃ CH ₃ O CH ₃ O CH ₃ A A A A A A A A A A A A A	онности н ₃ сонсн ₃ 42		
AChEª	1.21 ± 0.09	2.85 ± 0.24	147.18 ± 0.71	32.49 ± 0.52	1.09 ± 0.02		
BuChE ^a	3.34 ± 0.02	3.26 ± 0.05	20.32 ± 0.39	14.11 ± 0.25	5.57 ± 0.15		

^a IC₅₀ in μM ^b Inactive at 0.1 mg/ml

^a IC₅₀ in μM ^b Inactive at 0.1 mg/ml