Construction of Cyclopentane-fused Coumarins via DBU-Catalyzed [3 + 2] Cycloaddition of 3-homoacyl Coumarins with Cyclic 1-azadienes

Huawei Lin,^a Huimin Yang,^a Qi Gong,^a Shan Luo,^a Jing Gu,^a Xiaoqun Cao,^a Biming Mao,^{*b} Yanqing Ge^{*a} and Chunhao Yuan^{*a}

^aSchool of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, P. R. China. E-mail: yuanchunhao2017@163.com, geyanqing2016@126.com

^bInstitute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China. E-mail: maobiming@sdfmu.edu.cn

Contents

General Information	S2
Preparation of Cyclic 1-azadienes 1 and 4	S2
Preparation of 3-homoacyl Coumarins 2	S2
General Procedure for the [3+2] Cycloaddition Reaction	S2
Screening of Enantioselective Reaction Conditions	S3–S5
Analytic and Characterization Data for the Products 3, 5 and 6	S5–S21
References	S22
¹ H and ¹³ C NMR Spectra of All Products 3 , 5 and 6	S23–S53
X-Ray Crystallographic Data of 3aj	S54–S63

General Information

All reactions were performed under N₂ atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers. Organic solutions were concentrated under reduced pressure on a rotary evaporator. Reactions were monitored through thin layer chromatography (TLC) on silica gel–precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200–300 mesh). ¹H and ¹³C NMR spectra were recorded in CDCl₃ using a 400 MHz NMR instrument (referenced internally to Me₄Si). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral. Data for ¹³C NMR spectra are reported in terms of chemical shift. Accurate mass measurements were performed using an Agilent instrument with the ESI-MS technique. Melting points were determined on a Stuard SMP3 melting apparatus. X-ray crystallographic data were collected using a Bruker APEX-II CCD.

General procedure for preparation of cyclic 1-azadienes 1¹ and 4^{1a}

Cyclic 1-azadienes 1 and 4 were prepared by the reported procedure.

General procedure for preparation of 3-homoacyl coumarins 2²

3-homoacyl coumarins 2 were prepared by the reported procedure.

General Procedure for the [3+2] Cycloaddition Reaction of Cyclic 1-azadienes 1 or 4 with 3-homoacyl Coumarins 2

Under a nitrogen atmosphere, cyclic 1-azadiene **1** or **4** (0.1 mmol), 3-homoacyl coumarins **2** (0.12 mmol) and 20 mol% DBU were mixed in THF (2 mL). Then the reaction mixture was vigorously stirred at room temperature and monitored by TLC. After completion, the reaction mixture was centrated under reduced pressure and the mixture was purified by column chromatography on silica gel (PE/CH₂Cl₂ = 1:2) to give the corresponding product **3** or **5**.

Table S1. Screening of enantioselective reaction conditions^a

0

_

_

3

C3

 CH_2Cl_2

120

4	C4	CH_2Cl_2	120	0	-	-
5	C5	CH_2Cl_2	120	0	-	-
6	C6	CH_2Cl_2	120	0	-	-
7	C7	CH_2Cl_2	120	0	-	-
8	C8	CH_2Cl_2	120	0	-	-
9	С9	CH_2Cl_2	120	0	-	-
10	C10	CH_2Cl_2	120	0	-	-
11	C11	CH_2Cl_2	120	0	-	-
12	C12	CH_2Cl_2	120	0	-	-
13	C13	CH_2Cl_2	120	0	-	-
14	C14	CH_2Cl_2	120	0	-	-
15	C15	CH_2Cl_2	120	0	-	-
16	C16	CH_2Cl_2	120	0	-	-
17	C17	CH_2Cl_2	120	0	-	-
18	C18	CH_2Cl_2	120	0	-	-
19	C1	THF	120	0	-	-
20	C2	THF	120	0	-	-
21	C3	THF	120	0	-	-
22	C4	THF	120	0	-	-
23	C5	THF	120	0	-	-
24	C6	THF	120	0	-	-
25	C7	THF	120	0	-	-
26	C8	THF	120	0	-	-
27	C9	THF	120	0	-	-
28	C10	THF	120	0	-	-
29	C11	THF	120	0	-	-
30	C12	THF	120	0	-	-
31	C13	THF	120	0	-	-
32	C14	THF	120	0	-	-
33	C15	THF	120	0	-	-
34	C16	THF	120	0	-	-
35	C17	THF	120	0	-	-
36	C18	THF	120	0	-	-
37	C1	CH ₃ CN	120	46	>20:1	27.3
38	C2	CH ₃ CN	120	52.4	>20:1	9.5
39	C3	CH ₃ CN	120	60	>20:1	8
40	C4	CH ₃ CN	120	31	>20:1	0
41	C5	CH ₃ CN	120	46	>20:1	4
42	C6	CH ₃ CN	120	0	-	-
43	C7	CH ₃ CN	120	0	-	-
44	C8	CH ₃ CN	120	0	-	-
45	C9	CH ₃ CN	120	31	>20:1	4.5
46	C10	CH ₃ CN	120	0	-	-
47	C11	CH ₃ CN	120	41	>20:1	2

48	C12	CH ₃ CN	120	0	-	-
49	C13	CH ₃ CN	120	0	-	-
50	C14	CH ₃ CN	120	0	-	-
51	C15	CH ₃ CN	120	0	-	-
52	C16	CH ₃ CN	120	73	>20:1	11
53	C17	CH ₃ CN	120	0	-	-
54	C18	CH ₃ CN	120	36	>20:1	11

^{*a*} Reactions were carried out with **1a** (0.1 mmol), **2j** (0.12mmol), and 20 mol% catalyst in 2 mL of CH₃CN at rt. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR. ^{*d*} Determined by HPLC analysis.

Characterization Data for the [3+2] Cycloaddition Reaction Products 3 and 5.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3aa)

Orange solid (86%, 54.0mg), mp = 228 – 230 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.49 – 7.34 (m, 2H), 7.31 – 7.19 (m, 4H), 7.17 – 7.01 (m, 6H), 6.91 (d, *J* = 8.7 Hz, 1H), 6.71 (t, *J* = 7.7 Hz, 1H), 6.54 (d, *J* = 8.1 Hz, 1H), 5.02 (d, *J* = 6.9 Hz, 1H), 4.11 (dd, *J* = 11.8, 7.7 Hz, 1H), 3.81 (dd, *J* = 10.9, 7.1 Hz, 2H), 3.62 (t, *J* = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.2, 167.9, 152.4, 148.7, 138.4, 136.3, 133.5, 132.9, 131.6, 130.8, 128.4, 128.3, 127.6, 127.0, 126.9, 126.7, 124.2, 121.3, 117.8, 117.6, 116.7, 115.4, 57.9, 54.2, 54.0, 44.2, 44.1. HRMS (ESI) calcd for C₃₂H₂₂BrNO₆SNa⁺ [M+Na]⁺ 650.0243, found 650.0242.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(2-fluorophenyl)-1,3,3a,9b-t etrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3ba)

Yellow solid (85%, 54.9mg), mp = 193 – 195 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 2H), 7.48 – 7.37 (m, 2H), 7.33 – 7.19 (m, 4H), 7.15 – 7.03 (m, 3H), 6.96 – 6.87 (m, 2H), 6.83 – 6.78 (m, 3H), 5.06 (d, J = 7.5 Hz, 1H), 4.15 – 4.01 (m, 2H), 3.94 (t, J = 11.2 Hz, 1H), 3.76 (d, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.0, 167.5, 159.8 (d, J = 246.4 Hz), 152.5, 148.7, 136.4, 133.7, 132.9, 131.6, 130.9, 129.4 (d, J = 4.0 Hz), 128.9 (d, J = 8.5 Hz), 128.1, 127.7, 126.3, 124.8 (d, J = 12.3 Hz), 124.2, 124.2 (d, J = 3.2 Hz), 121.0, 117.9, 117.7, 116.6, 115.4, 115.1, 114.9, 54.7, 54.7, 52.9, 48.4, 44.0, 43.9. HRMS (ESI) calcd for C₃₂H₂₁BrFNO₆SNa⁺ [M+Na]⁺ 668.0149, found 668.0148.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(3-fluorophenyl)-1,3,3a,9b-t etrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3ca)

White solid (90%, 58.2mg), mp = 232 – 234 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 2H), 7.50 – 7.41 (m, 2H), 7.28 (t, *J* = 7.3 Hz, 3H), 7.17 – 7.06 (m, 3H), 6.96 – 6.73 (m, 5H), 6.63 (d, *J* = 8.1 Hz, 1H), 4.99 (d, *J* = 7.0 Hz, 1H), 4.05 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.91 (dd, *J* = 10.4, 7.1 Hz, 1H), 3.77 (d, *J* = 7.7 Hz, 1H), 3.62 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 176.9, 167.7, 162.1 (d, *J* = 248.0 Hz), 152.4, 148.6, 141.0 (d, *J* = 7.1 Hz), 136.6, 133.4, 133.0, 131.7, 130.8, 130.0 (d, *J* = 8.5 Hz), 128.2, 127.7, 126.5, 124.3, 122.8 (d, *J* = 2.8 Hz), 120.9, 118.0, 117.7, 116.7, 115.4, 114.1, 113.9 (d, *J* = 6.2 Hz), 113.6, 57.4, 53.7, 53.1, 44.4, 44.3. HRMS (ESI) calcd for C₃₂H₂₁BrFNO₆SNa⁺ [M+Na]⁺ 668.0149, found 668.0148.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(4-fluorophenyl)-1,3,3a,9b-t etrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3da)

White solid (85%, 55.0mg), mp = 245 – 247 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.32 – 7.23 (m, 3H), 7.18 – 7.01 (m, 4H), 6.95 – 6.71 (m, 4H), 6.59 (d, *J* = 8.0 Hz, 1H), 4.97 (d, *J* = 6.9 Hz, 1H), 4.05 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.86 (dd, *J* = 10.4, 7.1 Hz, 1H), 3.78 (d, *J* = 7.7 Hz, 1H), 3.59 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 177.0, 167.9, 161.1 (d, *J* = 247.8 Hz), 152.4, 148.6, 136.5, 134.2 (d, *J* = 3.1 Hz), 133.4, 133.0, 131.7, 130.8, 128.6 (d, *J* = 8.1 Hz), 128.2, 127.7, 126.5, 124.3, 121.0, 118.0, 117.6, 116.7, 115.4, 115.3, 115.2, 57.7, 53.9, 53.0, 44.3, 44.2. HRMS (ESI) calcd for C₃₂H₂₁BrFNO₆SNa⁺ [M+Na]⁺ 668.0149, found 668.0148.

3-benzoyl-8-bromo-2-(3-chlorophenyl)-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-1,3,3a,9b-t etrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3ea)

Orange solid (86%, 57.0mg), mp = 239 – 241 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 2H), 7.52 – 7.42 (m, 2H), 7.33 – 7.24 (m, 3H), 7.17 – 7.04 (m, 5H), 7.01 – 6.88 (m, 2H), 6.79 (t, *J* = 7.7 Hz, 1H), 6.64 (d, *J* = 8.1 Hz, 1H), 4.97 (d, *J* = 6.9 Hz, 1H), 4.03 (dd, *J* = 11.6, 7.9 Hz, 1H), 3.91 (dd, *J* = 10.2, 7.2 Hz, 2H), 3.76 (d, *J* = 7.7 Hz, 1H), 3.61 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 176.8, 167.7, 152.4, 148.6, 140.5, 136.6, 134.2, 133.4, 133.1, 131.7, 130.8, 129.6, 128.2, 127.7, 127.2, 126.9, 126.5, 125.2, 124.2, 120.9, 118.0, 117.7, 116.7, 115.3, 57.3, 53.7, 52.8, 44.3. HRMS (ESI) calcd for C₃₂H₂₁BrClNO₆SNa⁺ [M+Na]⁺ 683.9854, found 683.9851.

3-benzoyl-8-bromo-2-(4-chlorophenyl)-1-(2,2-dioxidobenzo[e][1,2,3]oxathiazin-4-yl)-1,3,3a,9b-t

etrahydrocyclopenta[c]chromen-4(2H)-one (3fa)

Yellow solid (80%, 53.0mg), mp = 72 – 74 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.7 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.8 Hz, 3H), 7.17 – 7.09 (m, 4H), 7.04 (d, *J* = 7.9 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 1H), 6.79 (t, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 4.96 (d, *J* = 6.9 Hz, 1H), 4.03 (dd, *J* = 11.9, 7.7 Hz, 1H), 3.89 (dd, *J* = 10.6, 7.0 Hz, 1H), 3.78 (d, *J* = 7.7 Hz, 1H), 3.58 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 176.8, 167.9, 152.4, 148.6, 137.0, 136.6, 133.4, 133.0, 132.8, 131.7, 130.8, 128.5, 128.3, 128.2, 127.7, 126.5, 124.3, 120.9, 118.0, 117.7, 116.8, 115.3, 57.6, 53.7, 52.8, 44.5, 44.3. HRMS (ESI) calcd for C₃₂H₂₁BrClNO₆SNa⁺ [M+Na]⁺ 683.9854, found 683.9853.

3-benzoyl-8-bromo-2-(3-bromophenyl)-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-1,3,3a,9b-t etrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3ga)

Orange solid (79%, 55.9mg), mp = 233 – 235 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.1 Hz, 2H), 7.54 – 7.42 (m, 2H), 7.34 – 7.22 (m, 5H), 7.19 – 7.08 (m, 2H), 7.06 – 7.00 (m, 2H), 6.92 (d, *J* = 8.7 Hz, 1H), 6.79 (t, *J* = 7.7 Hz, 1H), 6.64 (d, *J* = 8.1 Hz, 1H), 4.97 (d, *J* = 7.0 Hz, 1H), 4.03 (dd, *J* = 11.8, 7.7 Hz, 1H), 3.90 (dd, *J* = 10.6, 7.0 Hz, 1H), 3.76 (d, *J* = 7.8 Hz, 1H), 3.61 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.1, 176.8, 167.7, 152.4, 148.6, 140.7, 136.6, 133.4, 133.1, 131.7, 130.9, 130.1, 129.9, 129.9, 128.2, 127.8, 126.5, 125.7, 124.2, 122.3, 120.9, 118.0, 117.7, 116.8, 115.3, 57.3, 53.6, 52.8, 44.3, 44.2. HRMS (ESI) calcd for C₃₂H₂₁Br₂NO₆SNa⁺ [M+Na]⁺ 727.9349, found 727.9345.

3-benzoyl-8-bromo-2-(4-bromophenyl)-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-1,3,3a,9b-t etrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3ha)

Orange solid (80%, 56.6mg), mp = 231 – 233 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.24 (m, 5H), 7.16 – 7.09 (m, 2H), 6.98 (d, *J* = 7.9 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 1H), 6.80 (t, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 1H), 4.96 (d, *J* = 6.9 Hz, 1H), 4.02 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.89 (dd, *J* = 10.3, 7.1 Hz, 1H), 3.78 (d, *J* = 7.7 Hz, 1H), 3.58 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 176.8, 167.8, 152.4, 148.6, 137.5, 136.6, 133.4, 133.1, 131.7, 131.5, 130.8, 128.6, 128.2, 127.7, 126.5, 124.3, 120.9, 120.9, 118.0, 117.7, 116.7, 115.3, 57.5, 53.7, 52.8, 44.6, 44.3. HRMS (ESI) calcd for C₃₂H₂₁Br₂NO₆SNa⁺ [M+Na]⁺ 727.9349, found 727.9345.

4-(3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-4-oxo-1,2,3,3a,4,9b-hexahy drocyclopenta[*c*]chromen-2-yl)benzonitrile (3ia)

Yellow solid (75%, 49.0mg), mp = 62 – 64 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.54 – 7.40 (m, 4H), 7.35 – 7.23 (m, 5H), 7.15 (d, *J* = 8.3 Hz, 1H), 7.06 (s, 1H), 6.93 (d, *J* = 8.7 Hz, 1H), 6.80 (t, *J* = 7.7 Hz, 1H), 6.60 (d, *J* = 8.1 Hz, 1H), 4.99 (d, *J* = 7.0 Hz, 1H), 4.13 (dd, *J* = 10.5, 7.1 Hz, 1H), 3.99 (dd, *J* = 11.7, 7.7 Hz, 1H), 3.76 (d, *J* = 7.7 Hz, 1H), 3.62 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.9, 176.3, 167.6, 152.5, 148.6, 144.0, 136.9, 133.4, 133.2, 132.1, 131.9, 130.8, 128.1, 127.9, 126.2, 124.4, 120.5, 118.2, 117.7, 117.1, 116.8, 115.3, 110.9, 57.0, 53.4,

52.4, 45.0, 44.6. HRMS (ESI) calcd for $C_{33}H_{21}BrN_2O_6SNa^+$ [M+Na]⁺ 675.0196 found 675.0193.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(o-tolyl)-1,3,3a,9b-tetrahydr ocyclopenta[*c*]chromen-4(2*H*)-one (3ja)

White solid (79%, 50.8mg), mp = 190 – 192 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.54 – 7.36 (m, 3H), 7.34 – 7.18 (m, 5H), 7.07 (d, *J* = 8.3 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.74 – 6.68 (m, 2H), 6.52 (d, *J* = 8.1 Hz, 1H), 4.96 (d, *J* = 7.1 Hz, 1H), 4.17 (dd, *J* = 11.8, 7.9 Hz, 1H), 4.07 (dd, *J* = 10.4, 7.2 Hz, 1H), 3.87 (d, *J* = 7.9 Hz, 1H), 3.63 (t, *J* = 11.2 Hz, 1H), 1.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.3, 168.1, 152.4, 148.7, 137.0, 136.4, 136.2, 133.6, 132.8, 131.6, 130.9, 129.6, 128.1, 127.6, 126.8, 126.7, 126.7, 125.6, 124.2, 121.3, 117.8, 117.6, 116.7, 115.2, 58.4, 55.4, 49.4, 43.8, 43.7, 18.1. HRMS (ESI) calcd for C₃₃H₂₄BrNO₆SNa⁺ [M+Na]⁺ 664.0400 found 664.0399.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(m-tolyl)-1,3,3a,9b-tetrahyd rocyclopenta[*c*]chromen-4(2*H*)-one (3ka)

Orange solid (76%, 48.8mg), mp = 226 – 228 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.49 – 7.36 (m, 2H), 7.31 – 7.19 (m, 4H), 7.12 – 7.00 (m, 2H), 6.95 – 6.86 (m, 3H), 6.80 (s, 1H), 6.72 (t, *J* = 7.7 Hz, 1H), 6.56 (d, *J* = 8.1 Hz, 1H), 5.00 (d, *J* = 6.9 Hz, 1H), 4.09 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.91 – 3.70 (m, 2H), 3.61 (t, *J* = 11.1 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 177.3, 167.9, 152.4, 148.7, 138.3, 138.1, 136.2, 133.5, 132.8, 131.5, 130.9, 128.3,

127.7, 127.6, 127.6, 126.8, 124.1, 123.7, 121.3, 117.8, 117.6, 116.7, 115.5, 57.8, 54.1, 54.0, 44.2, 44.1, 20.3. HRMS (ESI) calcd for C₃₃H₂₄BrNO₆SNa⁺ [M+Na]⁺ 664.0400 found 664.0399.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(p-tolyl)-1,3,3a,9b-tetrahydr ocyclopenta[*c*]chromen-4(2*H*)-one (3la)

Yellow solid (73%, 46.9mg), mp = 201 – 203 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.43 (q, *J* = 8.0 Hz, 2H), 7.30 – 7.22 (m, 3H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.98 – 6.87 (m, 5H), 6.72 (t, *J* = 7.7 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 4.99 (d, *J* = 6.9 Hz, 1H), 4.08 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.86 – 3.72 (m, 2H), 3.60 (t, *J* = 11.1 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 177.3, 168.0, 152.4, 148.7, 136.7, 136.3, 135.3, 133.5, 132.8, 131.5, 130.8, 129.0, 128.3, 127.6, 126.8, 126.7, 124.1, 121.3, 117.8, 117.6, 116.7, 115.4, 58.0, 54.0, 53.8, 44.2, 44.2, 20.0. HRMS (ESI) calcd for C₃₃H₂₄BrNO₆SNa⁺ [M+Na]⁺ 664.0400 found 664.0399.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(2-methoxyphenyl)-1,3,3a,9 b-tetrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3ma)

Orange solid (67%, 44.1mg), mp = 56 – 58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.40 (q, *J* = 8.1 Hz, 2H), 7.35 – 7.18 (m, 4H), 7.12 – 7.02 (m, 2H), 6.93 – 6.86 (m, 2H), 6.76 – 6.58 (m, 4H), 5.09 (d, *J* = 7.2 Hz, 1H), 4.22 – 4.03 (m, 2H), 3.92 (dd, *J* = 9.8, 7.5 Hz, 1H), 3.78 (d, *J* = 7.7 Hz, 1H), 3.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 177.9, 167.9, 155.9, 152.3, 148.8, 134.0, 133.9, 132.6, 131.3, 131.0, 129.1, 128.4, 128.3, 127.5, 126.5, 125.3, 124.0, 121.9, 120.3, 117.,

117.56, 116.6, 115.6, 109.7, 54.1, 53.9, 52.7, 50.8, 43.7, 43.1. HRMS (ESI) calcd for $C_{33}H_{24}BrNO_7SNa^+$ [M+Na]⁺ 680.0349 found 680.0348.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(3-methoxyphenyl)-1,3,3a,9 b-tetrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3na)

Orange solid (75%, 49.4mg), mp = 93 – 94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 2H), 7.44 (q, *J* = 7.5 Hz, 2H), 7.31 – 7.21 (m, 3H), 7.13 – 7.04 (m, 2H), 6.91 (d, *J* = 8.7 Hz, 1H), 6.80 – 6.68 (m, 2H), 6.65 (dd, *J* = 8.2, 1.9 Hz, 1H), 6.62 – 6.51 (m, 2H), 5.03 (d, *J* = 6.8 Hz, 1H), 4.08 (dd, *J* = 11.8, 7.8 Hz, 1H), 3.85 – 3.76 (m, 2H), 3.67 – 3.56 (m, 1H), 3.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.3, 167.9, 159.2, 152.4, 148.7, 140.0, 136.4, 133.5, 132.9, 131.6, 130.8, 129.5, 128.3, 127.6, 126.7, 124.2, 121.2, 118.7, 117.8, 117.6, 116.7, 115.5, 112.9, 112.1, 57.8, 54.2, 54.1, 53.7, 44.2, 44.2. HRMS (ESI) calcd for C₃₃H₂₄BrNO₇SNa⁺ [M+Na]⁺ 680.0349 found 680.0347.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(4-methoxyphenyl)-1,3,3a,9 b-tetrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3oa)

Yellow solid (77%, 50.7mg), mp = 205 – 207 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.43 (q, *J* = 7.6, 7.2 Hz, 2H), 7.31 – 7.21 (m, 4H), 7.09 (d, *J* = 8.3 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 1H), 6.76 (t, *J* = 7.7 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 2H), 6.58 (d, *J* = 8.1 Hz, 1H), 4.97 (d, *J* = 6.9 Hz, 1H), 4.08 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.79 (d, *J* = 7.8 Hz, 1H), 3.75 (dd, *J* =

10.3, 7.1 Hz, 1H), 3.66 (s, 3H), 3.59 (t, J = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 177.4, 168.0, 158.1, 152.4, 148.7, 136.3, 133.5, 132.9, 131.5, 130.8, 130.2, 128.3, 128.0, 127.6, 126.8, 124.2, 121.3, 117.8, 117.6, 116.7, 115.4, 113.6, 58.0, 54.3, 54.1, 53.6, 44.1, 44.1. HRMS (ESI) calcd for C₃₃H₂₄BrNO₇SNa⁺ [M+Na]⁺ 680.0349 found 680.0348.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(naphthalen-2-yl)-1,3,3a,9btetrahydrocyclopenta[*c*]chromen-4(2*H*)-one (3pa)

Orange solid (72%, 48.8mg), mp = 122 - 124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 3H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.21 (m, 7H), 7.17 (d, *J* = 8.5 Hz, 3H), 7.02 (d, *J* = 8.3 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 1H), 6.55 – 6.44 (m, 2H), 5.13 (d, *J* = 6.9 Hz, 1H), 4.13 (dd, *J* = 11.8, 7.7 Hz, 1H), 4.02 (dd, *J* = 10.4, 6.9 Hz, 1H), 3.86 (d, *J* = 7.8 Hz, 1H), 3.74 (t, *J* = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.2, 168.0, 152.3, 148.7, 136.3, 135.4, 133.5, 132.9, 132.2, 131.6, 130.8, 128.7, 128.3, 127.6, 126.8, 126.6, 126.5, 125.6, 125.4, 124.0, 123.6, 121.2, 117.7, 117.7, 116.7, 115.4, 57.6, 54.1, 53.8, 44.4, 44.3. HRMS (ESI) calcd for C₃₆H₂₄BrNO₆SNa⁺ [M+Na]⁺ 700.0400, found 700.0398.

3-benzoyl-8-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-(thiophen-2-yl)-1,3,3a,9b-tet rahydrocyclopenta[*c*]chromen-4(2*H*)-one (3qa)

Orange solid (74%, 46.9mg), mp = 228 – 230 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.55 – 7.42 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.27 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.14 (d, J = 8.3 Hz, 1H), 7.14 (d, J =

2H), 7.08 – 7.02 (m, 1H), 6.94 – 6.83 (m, 2H), 6.80 – 6.67 (m, 3H), 5.05 (d, J = 7.1 Hz, 1H), 4.27 (dd, J = 10.3, 7.1 Hz, 1H), 4.06 (dd, J = 11.8, 7.9 Hz, 1H), 3.80 – 3.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 177.0, 167.5, 152.5, 148.7, 141.7, 136.5, 133.6, 133.0, 131.7, 130.7, 128.3, 127.8, 126.5, 125.6, 124.4, 124.3, 120.9, 118.0, 117.7, 116.7, 115.7, 58.1, 55.1, 48.2, 44.5, 44.2. HRMS (ESI) calcd for C₃₀H₂₀BrNO₆S₂Na⁺ [M+Na]⁺ 655.9808, found 655.9806.

3-benzoyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-8-fluoro-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3ab)

Orange solid (88%, 49.9mg), mp = 237 – 239 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.48 – 7.34 (m, 2H), 7.27 – 7.21 (m, 2H), 7.17 – 6.95 (m, 7H), 6.92 – 6.79 (m, 2H), 6.72 (t, *J* = 7.7 Hz, 1H), 6.54 (d, *J* = 8.1 Hz, 1H), 5.04 (d, *J* = 6.9 Hz, 1H), 4.14 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.92 – 3.74 (m, 2H), 3.64 (t, *J* = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 177.4, 168.2, 158.1 (d, *J* = 246.1 Hz), 152.4, 145.7 (d, *J* = 2.4 Hz), 138.4, 136.3, 133.6, 132.9, 128.4, 128.3, 127.6, 127.0, 126.9, 126.8, 124.2, 120.8 (d, *J* = 8.0 Hz), 117.8, 117.4 (d, *J* = 8.6 Hz), 115.6, 115.4, 114.6, 114.4, 57.9, 54.6, 54.0, 44.4, 44.2. HRMS (ESI) calcd for C₃₂H₂₂FNO₆SNa⁺ [M+Na]⁺ 590.1044 found 590.1047.

3-benzoyl-8-chloro-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3ac)

Orange solid (78%, 45.6mg), mp = 228 - 230 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz,

2H), 7.56 – 7.35 (m, 2H), 7.29 – 7.20 (m, 2H), 7.17 – 7.03 (m, 8H), 6.97 (d, J = 8.7 Hz, 1H), 6.71 (t, J = 7.7 Hz, 1H), 6.54 (d, J = 8.1 Hz, 1H), 5.03 (d, J = 6.9 Hz, 1H), 4.12 (dd, J = 11.7, 7.8 Hz, 1H), 3.90 – 3.75 (m, 2H), 3.62 (t, J = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.2, 168.0, 152.5, 148.2, 138.4, 136.3, 133.5, 132.9, 129.3, 128.6, 128.4, 128.3, 127.9, 127.6, 127.0, 126.9, 126.7, 124.2, 120.9, 117.8, 117.3, 115.4, 57.9, 54.4, 54.0, 44.2, 44.2. HRMS (ESI) calcd for C₃₂H₂₂ClNO₆SNa⁺ [M+Na]⁺ 606.0749 found 606.0749.

3-benzoyl-7-chloro-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3ad)

Orange solid (84%, 49.1mg), mp = 190 – 192 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.50 – 7.35 (m, 2H), 7.29 – 7.20 (m, 2H), 7.17 – 7.00 (m, 8H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.74 (t, *J* = 7.7 Hz, 1H), 6.53 (d, *J* = 8.1 Hz, 1H), 5.03 (d, *J* = 7.0 Hz, 1H), 4.18 (dd, *J* = 11.7, 7.9 Hz, 1H), 3.89 – 3.72 (m, 2H), 3.61 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 178.5, 169.0, 153.5, 151.1, 139.4, 137.3, 135.0, 134.6, 133.9, 130.0, 129.5, 129.4, 128.7, 128.0, 127.9, 125.5, 125.4, 118.9, 118.8, 117.4, 116.5, 59.1, 55.7, 55.1, 45.4, 45.1. HRMS (ESI) calcd for C₃₂H₂₂ClNO₆SNa⁺ [M+Na]⁺ 606.0749 found 606.0750.

3-benzoyl-7-bromo-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3ae)

Orange solid (86%, 54.0mg), mp = 197 – 199 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.48 – 7.34 (m, 2H), 7.29 – 7.20 (m, 2H), 7.17 – 6.96 (m, 8H), 6.74 (t, *J* = 7.7 Hz, 1H), 6.52 (d, *J* = 8.1 Hz, 1H), 5.03 (d, *J* = 7.0 Hz, 1H), 4.17 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.95 – 3.74 (m, 2H), 3.61 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 177.4, 167.9, 152.4, 150.1, 138.3, 136.3, 133.5, 132.9, 129.2, 128.4, 128.3, 127.6, 127.3, 127.0, 126.8, 124.3, 121.5, 119.2, 118.3, 117.8, 115.4, 58.0, 54.7, 54.0, 44.3, 44.1. HRMS (ESI) calcd for C₃₂H₂₂BrNO₆SNa⁺ [M+Na]⁺ 650.0243 found 650.0243.

3-benzoyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-8-methyl-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3af)

White solid (87%, 49.0mg), mp = 220 – 222 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.52 – 7.31 (m, 2H), 7.29 – 7.20 (m, 2H), 7.16 – 7.01 (m, 6H), 6.98 – 6.87 (m, 2H), 6.84 (s, 1H), 6.70 (t, *J* = 7.7 Hz, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 5.03 (d, *J* = 7.0 Hz, 1H), 4.07 (dd, *J* = 11.8, 7.7 Hz, 1H), 3.90 (dd, *J* = 10.5, 6.9 Hz, 1H), 3.76 (d, *J* = 7.8 Hz, 1H), 3.63 (t, *J* = 11.2 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 177.7, 168.7, 152.4, 147.5, 138.7, 136.0, 133.9, 133.7, 132.8, 129.0, 128.4, 128.3, 128.3, 127.6, 126.9, 126.8, 124.1, 118.7, 117.6, 115.6, 115.6, 58.1, 54.1, 54.0, 44.9, 44.8, 19.5. HRMS (ESI) calcd for C₃₃H₂₅NO₆SNa⁺ [M+Na]⁺ 586.1295 found 586.1297.

3-benzoyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-8-methoxy-2-phenyl-1,3,3a,9b-tetrahyd rocyclopenta[*c*]chromen-4(2*H*)-one (3ag)

White solid (94%, 54.5mg), mp = 203 – 205 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.47 – 7.34 (m, 2H), 7.30 – 7.20 (m, 2H), 7.17 – 7.01 (m, 6H), 6.94 (d, *J* = 8.9 Hz, 1H), 6.77 – 6.65 (m, 2H), 6.64 – 6.58 (m, 1H), 6.55 (d, *J* = 8.1 Hz, 1H), 5.04 (d, *J* = 7.0 Hz, 1H), 4.14 (dd, *J* = 11.7, 7.9 Hz, 1H), 3.87 (dd, *J* = 10.4, 7.1 Hz, 1H), 3.75 (d, *J* = 7.9 Hz, 1H), 3.64 (t, *J* = 11.2 Hz, 1H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 177.8, 168.6, 155.5, 152.4, 143.4, 138.6, 136.2, 133.7, 132.8, 128.3, 128.3, 127.6, 126.9, 126.9, 124.3, 119.6, 117.7, 117.0, 115.8, 115.5, 110.7, 58.0, 54.6, 54.3, 54.2, 45.1, 44.5. HRMS (ESI) calcd for C₃₃H₂₅NO₇SNa⁺ [M+Na]⁺ 602.1244 found 602.1246.

3-benzoyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-7-methyl-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3ah)

Orange solid (86%, 48.5mg), mp = 186 – 188 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.49 – 7.32 (m, 2H), 7.29 – 7.19 (m, 2H), 7.17 – 7.05 (m, 5H), 7.03 (d, *J* = 8.3 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 6.83 (s, 1H), 6.70 (t, *J* = 8.3 Hz, 2H), 6.53 (d, *J* = 8.1 Hz, 1H), 5.04 (d, *J* = 7.0 Hz, 1H), 4.12 (dd, *J* = 11.7, 7.8 Hz, 1H), 3.89 (dd, *J* = 10.5, 7.1 Hz, 1H), 3.76 (d, *J* = 7.8 Hz, 1H), 3.62 (t, *J* = 11.2 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 177.9, 168.7, 152.4, 149.5, 139.0, 138.7, 136.0, 133.7, 132.8, 128.3, 128.3, 127.6, 127.6, 126.9, 126.9, 126.8, 125.0, 124.2, 117.7, 116.2, 116.0, 115.6, 58.2, 54.3, 54.0, 44.8, 44.7, 20.1. HRMS (ESI) calcd for C₃₃H₂₅NO₆SNa⁺ [M+Na]⁺ 586.1295 found 586.1298.

3-benzoyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-7-methoxy-2-phenyl-1,3,3a,9b-tetrahyd rocyclopenta[*c*]chromen-4(2*H*)-one (3ai)

Yellow solid (83%, 48.1mg), mp = 231 – 233 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.53 – 7.33 (m, 2H), 7.29 – 7.20 (m, 2H), 7.17 – 7.05 (m, 5H), 7.04 (d, *J* = 8.3 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.73 (t, *J* = 7.7 Hz, 1H), 6.57 (d, *J* = 5.5 Hz, 1H), 6.55 (s, 1H), 6.43 (dd, *J* = 8.9, 2.5 Hz, 1H), 5.02 (d, *J* = 7.1 Hz, 1H), 4.10 (dd, *J* = 11.8, 7.8 Hz, 1H), 3.89 (dd, *J* = 10.6, 7.1 Hz, 1H), 3.76 (d, *J* = 7.9 Hz, 1H), 3.65 (s, 3H), 3.61 (t, *J* = 11.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 178.0, 168.6, 159.5, 152.4, 150.5, 138.7, 136.1, 133.7, 132.8, 128.6, 128.3, 128.3, 127.6, 127.0, 126.9, 126.8, 124.2, 117.7, 115.6, 110.9, 109.9, 101.6, 58.3, 54.5, 54.2, 53.9, 44.8, 44.6. HRMS (ESI) calcd for C_{33H25}NO₇SNa⁺ [M+Na]⁺ 602.1244 found 602.1246.

3-benzoyl-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-1,3,3a,9b-tetrahydrocyclopent a[*c*]chromen-4(2*H*)-one (3aj)

Orange solid (83%, 46.7mg), mp = 187 – 189 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 2H), 7.40 (dt, *J* = 24.6, 7.5 Hz, 2H), 7.25 (t, *J* = 7.7 Hz, 2H), 7.18 – 6.99 (m, 9H), 6.88 (t, *J* = 7.5 Hz, 1H), 6.70 (t, *J* = 7.7 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 5.04 (d, *J* = 7.0 Hz, 1H), 4.14 (dd, *J* = 11.8, 7.8 Hz, 1H), 3.91 (dd, *J* = 10.5, 7.1 Hz, 1H), 3.80 (d, *J* = 7.8 Hz, 1H), 3.65 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 177.7, 168.5, 152.4, 149.7, 138.6, 136.1, 133.7, 132.8, 128.6, 128.3, 128.3, 128.0, 127.6, 126.9, 126.8, 124.2, 119.1, 117.7, 115.9, 115.6, 58.1, 54.2, 54.1, 45.0, 44.8. HRMS (ESI) calcd for C₃₂H₂₃NO₆SNa⁺ [M+Na]⁺ 572.1138, found 572.1141.

1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-3-(4-fluorobenzoyl)-2-phenyl-1,3,3a,9b-tetrahydro cyclopenta[*c*]chromen-4(2*H*)-one (3ak)

Orange solid (90%, 51.1mg), mp = 173 – 175 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.72 (m, 2H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.19 – 7.00 (m, 9H), 6.97 – 6.80 (m, 3H), 6.71 (t, *J* = 7.7 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 4.99 (d, *J* = 7.1 Hz, 1H), 4.13 (dd, *J* = 11.8, 7.8 Hz, 1H), 3.87 (dd, *J* = 10.5, 7.2 Hz, 1H), 3.80 (dd, *J* = 7.8, 1.6 Hz, 1H), 3.66 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 177.6, 168.5, 165.1 (d, *J* = 256.4 Hz), 152.4, 149.6, 138.4, 136.1, 131.1 (d, *J* = 9.5 Hz), 130.1 (d, *J* = 2.9 Hz), 128.6, 128.4, 128.0, 127.0, 126.8, 126.8, 124.2 (d, *J* = 2.4 Hz), 119.0, 117.8, 116.0, 115.5, 114.9, 114.7, 58.0, 54.3, 54.1 45.1, 44.6. HRMS (ESI) calcd for C₃₂H₂₂FNO₆SNa⁺ [M+Na]⁺ 590.1044 found 590.1049.

3-(4-bromobenzoyl)-1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-2-phenyl-1,3,3a,9b-tetrahydr ocyclopenta[*c*]chromen-4(2*H*)-one (3al)

Orange solid (92%, 57.8mg), mp = 72 – 74 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.60 (s, 1H), 7.42 – 7.34 (m, 3H), 7.19 – 6.99 (m, 9H), 6.88 (t, *J* = 7.5 Hz, 1H), 6.71 (t, *J* = 7.7 Hz, 1H), 6.53 (d, *J* = 8.1 Hz, 1H), 4.97 (d, *J* = 7.1 Hz, 1H), 4.12 (dd, *J* = 11.6, 7.9 Hz, 1H), 3.86 (dd, *J* = 10.1, 7.4 Hz, 1H), 3.80 (d, *J* = 7.8 Hz, 1H), 3.65 (t, *J* = 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 177.6, 168.5, 152.4, 149.6, 138.4, 136.2, 132.4, 130.9, 129.8, 128.6, 128.5, 128.2, 127.9, 127.0, 126.8, 124.3, 124.2, 119.0, 117.8, 116.0, 115.5, 58.0, 54.2, 54.1, 45.1, 44.6. HRMS (ESI) calcd for C₃₂H₂₂BrNO₆SNa⁺ [M+Na]⁺ 650.0243 found 650.0243.

1-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-3-(4-methylbenzoyl)-2-phenyl-1,3,3a,9b-tetrahydr ocyclopenta[*c*]chromen-4(2*H*)-one (3am)

Orange solid (80%, 45.1mg), mp = 185 – 187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.16 – 6.99 (m, 11H), 6.87 (t, *J* = 7.5 Hz, 1H), 6.69 (t, *J* = 7.7 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.01 (d, *J* = 6.9 Hz, 1H), 4.14 (dd, *J* = 11.8, 7.8 Hz, 1H), 3.90 (dd, *J* = 10.4, 7.0 Hz, 1H), 3.78 (d, *J* = 7.8 Hz, 1H), 3.64 (t, *J* = 11.2 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 177.8, 168.6, 152.4, 149.7, 143.8, 138.7, 136.1, 131.2, 128.5, 128.4, 128.3, 128.3, 128.0, 126.9, 126.9, 126.8, 124.2, 124.2, 119.2, 117.7, 115.9, 115.6, 58.1, 54.4, 53.9, 45.1, 44.9, 20.6. HRMS (ESI) calcd for C₃₃H₂₅NO₆SNa⁺ [M+Na]⁺ 586.1295 found 586.1296.

3-benzoyl-8-bromo-1-(1,1-dioxidobenzo[*d*]isothiazol-3-yl)-2-phenyl-1,3,3a,9b-tetrahydrocyclop enta[*c*]chromen-4(2*H*)-one (5)

White solid (85%, 52.1mg), mp = 212 – 214 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.49 – 7.36 (m, 3H), 7.32 – 7.20 (m, 3H), 7.20 – 7.13 (m, 3H), 7.13 – 7.04 (m, 3H), 6.90 (d, *J* = 8.7 Hz, 1H), 6.20 (d, *J* = 7.8 Hz, 1H), 5.04 (d, *J* = 6.6 Hz, 1H), 4.19 (dd, *J* = 11.9, 7.9 Hz, 1H), 3.90 – 3.68 (m, 2H), 3.44 (t, *J* = 11.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 173.7, 167.9, 148.8, 138.9, 138.7, 133.5, 132.9, 132.7, 132.2, 131.6, 131.5, 129.3, 128.5, 128.3, 127.6, 127.1, 127.1, 123.2, 121.5, 121.4, 117.6, 116.7, 55.5, 54.5, 54.1, 44.5, 43.4. HRMS (ESI) calcd for C₃₂H₂₂BrNO₅SNa⁺ [M+Na]⁺ 634.0294, found 634.0893.

Further Transformation of 3aa

The compound **3aa** (62.8 mg, 0.1 mmol) was dissolved in 1 mL MeOH, and 5 μ L 3M KOH until pH was 9, then the reaction mixture was stirred for 3 h at room temperature. The solvent was removed and the crude product was purified through silica gel (petroleum ether/EtOAc 2:1) to afford the desired product **6**.

methyl

2-benzoyl-5-(5-bromo-2-hydroxyphenyl)-4-(2,2-dioxidobenzo[*e*][1,2,3]oxathiazin-4-yl)-3-phenyl cyclopentanecarboxylate (6)

White solid (79%, 52.2mg), mp = 98 – 100 °C.¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.33 (m, 4H), 7.22 (t, *J* = 7.8 Hz, 3H), 7.14 – 6.97 (m, 5H), 6.99 – 6.87 (m, 2H), 6.56 (d, *J* = 8.5 Hz, 1H), 6.38 (s, 1H), 4.85 (dd, *J* = 9.3, 4.9 Hz, 1H), 4.74 (t, *J* = 11.0 Hz, 1H), 4.52 (t, *J* = 10.4 Hz, 1H), 3.99 – 3.81 (m, 2H), 3.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 179.9, 174.1, 152.4, 152.2, 138.2, 136.0, 134.9, 132.5, 130.5, 129.5, 128.1, 127.7, 127.5, 127.1, 126.8, 126.8, 124.9, 124.5, 117.7, 116.6, 115.7, 111.2, 55.4, 53.9, 52.9, 51.1, 49.7, 47.1. HRMS (ESI) calcd for C₃₃H₂₆BrNO₇SNa⁺ [M+Na]⁺ 682.0506, found 682.1152.

References

- 1. (a) X. Feng, Z. Zhou, C. Ma, X. Yin, R. Li, Y.-C. Chen. Angew. Chem. Int. Ed. 2013, 52, 14173. (b)
- C. Ma, J. Gu, B. Teng, Q. Zhou, R. Li, Y.-C. Chen. Org. Lett. 2013, 15, 6206. (c) Y. Wu, Y. Liu, W.
- Yang, H. Liu, L. Zhou, Z. Sun, H. Guo. Adv. Synth. Catal. 2016, 358, 3517. (d) Q. An, J. Shen, N.
- Butt, D. Liu, Y. Liu, W. Zhang. Adv. Synth. Catal. 2015, 357, 3627.
- 2. Y.-R. Chen, M. R. Ganapuram, K.-H. Hsieh, K.-H. Chen, P. Karanam, S. S. Vagh, Y.-C. Liou and W. Lin, *Chem. Commun.*, 2018, **54**, 12702.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

S26

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

S34

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

X-Ray Crystallography Data

Crystallographic data for **3aj** have been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2073841. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

X-Ray Crystallography Data of 3aj

Table 1. Crystal data and structure refinement for **3aj**.

Identification code	3aj	
Empirical formula	C32 H23 N O6 S	
Formula weight	549.57	
Temperature	193(2) K	
Wavelength	1.34139 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.5537(10) Å	α= 114.381(3)°.
	b = 11.0474(11) Å	β= 99.000(3)°.
	c = 13.2402(13) Å	$\gamma = 101.915(3)^{\circ}$.
Volume	1324.2(2) Å ³	
Z	2	
Density (calculated)	1.378 Mg/m ³	
Absorption coefficient	0.967 mm ⁻¹	
F(000)	572	
Crystal size	0.160 x 0.120 x 0.110 mm ³	
Theta range for data collection	3.312 to 52.989°.	
Index ranges	-12<=h<=12, -13<=k<=13, -15<=l<=15	

Reflections collected	13998
Independent reflections	4655 [R(int) = 0.0673]
Completeness to theta = 52.989°	99.2 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4655 / 0 / 361
Goodness-of-fit on F ²	1.039
Final R indices [I>2sigma(I)]	R1 = 0.0758, wR2 = 0.2104
R indices (all data)	R1 = 0.0793, wR2 = 0.2158
Extinction coefficient	n/a
Largest diff. peak and hole	0.382 and -0.502 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3)

for 3aj. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	-1134(2)	1396(2)	6040(2)	43(1)
C(2)	-2256(3)	578(3)	6134(2)	54(1)
C(3)	-2099(3)	-105(3)	6792(2)	54(1)
C(4)	-825(3)	14(3)	7351(2)	56(1)
C(5)	291(3)	799(3)	7243(2)	49(1)
C(6)	139(2)	1508(2)	6590(2)	36(1)
C(7)	1372(2)	2343(2)	6486(2)	33(1)
C(8)	1387(2)	3694(2)	6416(2)	29(1)
C(9)	1865(2)	3736(2)	5371(2)	29(1)
C(10)	728(2)	3712(2)	4508(2)	32(1)
C(11)	2303(2)	5260(2)	4111(2)	33(1)
C(12)	2459(2)	5776(3)	3328(2)	43(1)
C(13)	3683(3)	6700(3)	3517(2)	45(1)
C(14)	4731(2)	7101(2)	4471(2)	38(1)
C(15)	4558(2)	6558(2)	5234(2)	33(1)
C(16)	3327(2)	5631(2)	5068(2)	29(1)
C(17)	3113(2)	5019(2)	5877(2)	28(1)
C(18)	2926(2)	5986(2)	7048(2)	27(1)
C(19)	2455(2)	4929(2)	7489(2)	29(1)
C(20)	1977(2)	5481(2)	8562(2)	33(1)
C(21)	1100(2)	6293(2)	8696(2)	40(1)
C(22)	710(3)	6798(3)	9707(2)	52(1)
C(23)	1185(3)	6506(3)	10591(2)	58(1)

C(24)	2030(3)	5695(3)	10458(2)	55(1)
C(25)	2433(2)	5183(2)	9454(2)	42(1)
C(26)	4239(2)	7102(2)	7812(2)	29(1)
C(27)	4464(2)	8527(2)	7987(2)	31(1)
C(28)	3596(2)	8920(2)	7344(2)	36(1)
C(29)	3863(2)	10291(3)	7547(2)	44(1)
C(30)	4980(3)	11296(2)	8414(2)	47(1)
C(31)	5852(2)	10952(2)	9060(2)	43(1)
C(32)	5593(2)	9574(2)	8826(2)	35(1)
N(1)	5139(2)	6686(2)	8253(2)	35(1)
O(1)	6479(2)	9251(2)	9507(1)	42(1)
O(2)	7350(2)	7697(2)	8048(2)	52(1)
O(3)	7239(2)	7502(2)	9809(2)	61(1)
O(4)	1025(2)	4367(2)	3869(1)	39(1)
O(5)	-431(2)	3100(2)	4317(1)	44(1)
O(6)	2389(2)	1992(2)	6493(2)	46(1)
S(1)	6667(1)	7736(1)	8897(1)	40(1)

Table 3. Bond lengths [Å] and angles [°] for ${\bf 3aj.}$

C(1)-C(6)	1.379(3)	
C(1)-C(2)	1.389(3)	
C(1)-H(1)	0.9500	
C(2)-C(3)	1.380(4)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.381(4)	
C(3)-H(3)	0.9500	
C(4)-C(5)	1.377(3)	
C(4)-H(4)	0.9500	
C(5)-C(6)	1.398(3)	
C(5)-H(5)	0.9500	
C(6)-C(7)	1.492(3)	
C(7)-O(6)	1.213(3)	
C(7)-C(8)	1.531(3)	
C(8)-C(19)	1.554(3)	
C(8)-C(9)	1.560(2)	
C(8)-H(8)	1.0000	
C(9)-C(10)	1.509(3)	

C(9)-C(17)	1.536(3)
C(9)-H(9)	1.0000
C(10)-O(5)	1.200(3)
C(10)-O(4)	1.354(2)
C(11)-C(16)	1.379(3)
C(11)-C(12)	1.388(3)
C(11)-O(4)	1.397(2)
C(12)-C(13)	1.384(3)
C(12)-H(12)	0.9500
C(13)-C(14)	1.384(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.388(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.399(3)
C(15)-H(15)	0.9500
C(16)-C(17)	1.506(2)
C(17)-C(18)	1.549(2)
C(17)-H(17)	1.0000
C(18)-C(26)	1.513(3)
C(18)-C(19)	1.537(2)
C(18)-H(18)	1.0000
C(19)-C(20)	1.511(3)
C(19)-H(19)	1.0000
C(20)-C(25)	1.394(3)
C(20)-C(21)	1.399(3)
C(21)-C(22)	1.386(3)
C(21)-H(21)	0.9500
C(22)-C(23)	1.386(4)
C(22)-H(22)	0.9500
C(23)-C(24)	1.370(5)
C(23)-H(23)	0.9500
C(24)-C(25)	1.387(3)
C(24)-H(24)	0.9500
C(25)-H(25)	0.9500
C(26)-N(1)	1.297(3)
C(26)-C(27)	1.455(3)
C(27)-C(32)	1.395(3)
C(27)-C(28)	1.406(3)

C(28)-C(29)	1.382(3)
C(28)-H(28)	0.9500
C(29)-C(30)	1.387(4)
C(29)-H(29)	0.9500
C(30)-C(31)	1.374(3)
C(30)-H(30)	0.9500
C(31)-C(32)	1.379(3)
C(31)-H(31)	0.9500
C(32)-O(1)	1.398(3)
N(1)-S(1)	1.6291(17)
O(1)-S(1)	1.6013(18)
O(2)-S(1)	1.4185(18)
O(3)-S(1)	1.4089(18)
C(6)-C(1)-C(2)	120.0(2)
C(6)-C(1)-H(1)	120.0
C(2)-C(1)-H(1)	120.0
C(3)-C(2)-C(1)	120.1(3)
C(3)-C(2)-H(2)	119.9
C(1)-C(2)-H(2)	119.9
C(4)-C(3)-C(2)	120.0(2)
C(4)-C(3)-H(3)	120.0
C(2)-C(3)-H(3)	120.0
C(5)-C(4)-C(3)	120.2(3)
C(5)-C(4)-H(4)	119.9
C(3)-C(4)-H(4)	119.9
C(4)-C(5)-C(6)	120.1(3)
C(4)-C(5)-H(5)	120.0
C(6)-C(5)-H(5)	120.0
C(1)-C(6)-C(5)	119.6(2)
C(1)-C(6)-C(7)	121.87(19)
C(5)-C(6)-C(7)	118.5(2)
O(6)-C(7)-C(6)	121.08(19)
O(6)-C(7)-C(8)	118.85(18)
C(6)-C(7)-C(8)	120.03(18)
C(7)-C(8)-C(19)	108.64(15)
C(7)-C(8)-C(9)	112.58(16)
C(19)-C(8)-C(9)	104.40(15)
C(7)-C(8)-H(8)	110.4

C(19)-C(8)-H(8)	110.4
C(9)-C(8)-H(8)	110.4
C(10)-C(9)-C(17)	115.25(16)
C(10)-C(9)-C(8)	110.55(16)
C(17)-C(9)-C(8)	106.26(15)
C(10)-C(9)-H(9)	108.2
C(17)-C(9)-H(9)	108.2
C(8)-C(9)-H(9)	108.2
O(5)-C(10)-O(4)	117.17(18)
O(5)-C(10)-C(9)	124.03(18)
O(4)-C(10)-C(9)	118.74(17)
C(16)-C(11)-C(12)	122.3(2)
C(16)-C(11)-O(4)	122.73(17)
C(12)-C(11)-O(4)	114.94(19)
C(13)-C(12)-C(11)	118.9(2)
C(13)-C(12)-H(12)	120.6
C(11)-C(12)-H(12)	120.6
C(14)-C(13)-C(12)	120.4(2)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(13)-C(14)-C(15)	119.7(2)
C(13)-C(14)-H(14)	120.1
C(15)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	121.0(2)
C(14)-C(15)-H(15)	119.5
C(16)-C(15)-H(15)	119.5
C(11)-C(16)-C(15)	117.66(18)
C(11)-C(16)-C(17)	120.13(18)
C(15)-C(16)-C(17)	122.20(18)
C(16)-C(17)-C(9)	113.56(15)
C(16)-C(17)-C(18)	116.83(16)
C(9)-C(17)-C(18)	103.61(14)
C(16)-C(17)-H(17)	107.5
C(9)-C(17)-H(17)	107.5
C(18)-C(17)-H(17)	107.5
C(26)-C(18)-C(19)	113.70(15)
C(26)-C(18)-C(17)	110.40(15)
C(19)-C(18)-C(17)	100.76(14)

C(26)-C(18)-H(18)	110.5
C(19)-C(18)-H(18)	110.5
C(17)-C(18)-H(18)	110.5
C(20)-C(19)-C(18)	115.61(16)
C(20)-C(19)-C(8)	114.84(15)
C(18)-C(19)-C(8)	103.32(14)
C(20)-C(19)-H(19)	107.5
C(18)-C(19)-H(19)	107.5
C(8)-C(19)-H(19)	107.5
C(25)-C(20)-C(21)	118.9(2)
C(25)-C(20)-C(19)	119.0(2)
C(21)-C(20)-C(19)	122.14(18)
C(22)-C(21)-C(20)	120.0(2)
C(22)-C(21)-H(21)	120.0
C(20)-C(21)-H(21)	120.0
C(21)-C(22)-C(23)	120.5(3)
C(21)-C(22)-H(22)	119.7
C(23)-C(22)-H(22)	119.7
C(24)-C(23)-C(22)	119.7(2)
C(24)-C(23)-H(23)	120.1
C(22)-C(23)-H(23)	120.1
C(23)-C(24)-C(25)	120.6(2)
C(23)-C(24)-H(24)	119.7
C(25)-C(24)-H(24)	119.7
C(24)-C(25)-C(20)	120.3(2)
C(24)-C(25)-H(25)	119.9
C(20)-C(25)-H(25)	119.9
N(1)-C(26)-C(27)	123.46(18)
N(1)-C(26)-C(18)	115.61(18)
C(27)-C(26)-C(18)	120.88(17)
C(32)-C(27)-C(28)	117.23(19)
C(32)-C(27)-C(26)	119.51(18)
C(28)-C(27)-C(26)	123.26(18)
C(29)-C(28)-C(27)	120.7(2)
C(29)-C(28)-H(28)	119.7
C(27)-C(28)-H(28)	119.7
C(28)-C(29)-C(30)	119.7(2)
C(28)-C(29)-H(29)	120.2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	45(1)	32(1)	42(1)	16(1)	5(1)	1(1)
C(2)	43(1)	42(1)	60(2)	17(1)	8(1)	-1(1)
C(3)	58(2)	36(1)	60(2)	17(1)	28(1)	3(1)
C(4)	72(2)	49(1)	60(2)	35(1)	29(1)	13(1)
C(5)	55(2)	48(1)	58(1)	35(1)	23(1)	16(1)
C(6)	43(1)	28(1)	34(1)	13(1)	15(1)	8(1)
C(7)	37(1)	32(1)	32(1)	16(1)	9(1)	10(1)
C(8)	32(1)	28(1)	26(1)	13(1)	7(1)	8(1)
C(9)	33(1)	28(1)	26(1)	13(1)	6(1)	9(1)
C(10)	35(1)	32(1)	24(1)	11(1)	5(1)	6(1)
C(11)	37(1)	33(1)	27(1)	14(1)	9(1)	8(1)
C(12)	48(1)	54(1)	31(1)	26(1)	8(1)	10(1)

the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å²x 10³) for **3aj**. The anisotropic displacement factor exponent takes

C(30)-C(29)-H(29)	120.2
C(31)-C(30)-C(29)	121.3(2)
C(31)-C(30)-H(30)	119.4
C(29)-C(30)-H(30)	119.4
C(30)-C(31)-C(32)	118.4(2)
C(30)-C(31)-H(31)	120.8
C(32)-C(31)-H(31)	120.8
C(31)-C(32)-C(27)	122.7(2)
C(31)-C(32)-O(1)	117.38(19)
C(27)-C(32)-O(1)	119.84(19)
C(26)-N(1)-S(1)	119.18(15)
C(32)-O(1)-S(1)	116.12(13)
C(10)-O(4)-C(11)	122.36(16)
O(3)-S(1)-O(2)	119.90(12)
O(3)-S(1)-O(1)	105.02(11)
O(2)-S(1)-O(1)	108.18(10)
O(3)-S(1)-N(1)	109.64(10)
O(2)-S(1)-N(1)	108.61(10)
O(1)-S(1)-N(1)	104.36(9)

C(13)	56(1)	51(1)	38(1)	29(1)	18(1)	14(1)
C(14)	42(1)	38(1)	37(1)	19(1)	16(1)	9(1)
C(15)	36(1)	35(1)	29(1)	13(1)	10(1)	11(1)
C(16)	32(1)	31(1)	26(1)	14(1)	10(1)	11(1)
C(17)	28(1)	31(1)	25(1)	14(1)	6(1)	9(1)
C(18)	28(1)	28(1)	24(1)	12(1)	6(1)	7(1)
C(19)	29(1)	31(1)	25(1)	14(1)	4(1)	7(1)
C(20)	31(1)	34(1)	25(1)	13(1)	4(1)	-1(1)
C(21)	35(1)	43(1)	31(1)	10(1)	8(1)	4(1)
C(22)	46(1)	48(1)	42(1)	5(1)	16(1)	3(1)
C(23)	62(2)	55(2)	29(1)	6(1)	17(1)	-12(1)
C(24)	63(2)	58(2)	29(1)	20(1)	9(1)	-7(1)
C(25)	46(1)	45(1)	31(1)	21(1)	5(1)	2(1)
C(26)	29(1)	34(1)	24(1)	14(1)	6(1)	7(1)
C(27)	31(1)	32(1)	28(1)	14(1)	8(1)	8(1)
C(28)	33(1)	34(1)	38(1)	18(1)	4(1)	8(1)
C(29)	42(1)	43(1)	57(1)	31(1)	13(1)	16(1)
C(30)	50(1)	32(1)	59(1)	22(1)	17(1)	10(1)
C(31)	41(1)	34(1)	43(1)	15(1)	9(1)	1(1)
C(32)	33(1)	37(1)	31(1)	15(1)	7(1)	6(1)
N(1)	31(1)	37(1)	37(1)	21(1)	2(1)	7(1)
O(1)	35(1)	43(1)	36(1)	17(1)	-4(1)	3(1)
O(2)	38(1)	55(1)	68(1)	30(1)	20(1)	13(1)
O(3)	44(1)	68(1)	66(1)	41(1)	-14(1)	7(1)
O(4)	36(1)	48(1)	30(1)	22(1)	1(1)	4(1)
O(5)	33(1)	54(1)	37(1)	24(1)	-1(1)	0(1)
O(6)	47(1)	47(1)	65(1)	37(1)	24(1)	23(1)
S (1)	28(1)	44(1)	47(1)	25(1)	0(1)	6(1)

Table 5.	Hydrogen coordinates	(x 10 ⁴) a	and isotropic d	lisplacement	parameters (Å ² x 10 ³	³) for 3aj .
----------	----------------------	-------------------------	-----------------	--------------	--------------	----------------------------------	---------------------------------

	Х	у	Z	U(eq)
H(1)	-1245	1877	5597	51
H(2)	-3132	490	5745	64
H(3)	-2868	-657	6861	65
H(4)	-719	-448	7811	67

H(5)	1166	860	7612	59
H(8)	478	3834	6385	35
H(9)	2147	2886	4985	35
H(12)	1738	5499	2673	52
H(13)	3805	7060	2988	54
H(14)	5566	7744	4604	46
H(15)	5285	6820	5880	40
H(17)	3915	4715	6044	34
H(18)	2208	6418	6929	33
H(19)	3232	4595	7665	34
H(21)	771	6499	8094	48
H(22)	114	7348	9795	63
H(23)	926	6866	11286	69
H(24)	2343	5482	11059	66
H(25)	3024	4626	9373	51
H(28)	2818	8235	6763	43
H(29)	3284	10544	7096	53
H(30)	5146	12241	8564	56
H(31)	6614	11646	9653	51

Table 6.Torsion angles [°] for **3aj**.