High-throughput immunosensor chip coupled with a fluorescent DNA dendrimer for ultrasensitive detection of cardiac troponin T

Ruike Wang, ^{†, a, b} Chen Zong, ^{†, b} Gairu Li, ^a Junhong Wang, ^c Tiantian Kong, ^{* d} Fei Li ^{* a, b} and Junmin Chang ^{* a}

^a College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, P.R. China.
 ^b State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China.

^c Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China.

^d Xinjiang Medical University Affiliated Second Hospital, Urumqi, 830063, P.R. China. *Corresponding author. Tel. / Fax: +86-0991-2110353

E-mail address: cjmcjn2471@sohu.com (J. M. Chang), lifeicpu@163.com (F. Li), ktiantian_22@126.com (T. T. Kong) [†] R. K. Wang and C. Zong contributed equally.

Contents

1. Supporting Tables	S1
2. Supporting Figures	S 3
3. Supporting References	S 5

1. Supporting Tables

Oligonucleotides	Sequences of oligonucleotides (5'-3')
Y _{0a}	AACCGATGGATGATGCATCTGCATGACATTCGTCGTAAG
	AACCGATGGATGACTTACGACGAATGACCGAATCAGCC
r _{0b}	Т
Y _{0c}	AACCGATGGATGAAGGCTGATTCGGTTCATGCAGATGC
	A
Y _{1a}	TCATCCATCGGTTTGCATCTGCATGACATTCGTCGTAAG
Y _{1b}	AAAGCCACTCTGACTTACGACGAATGACCGAATCAGCCT
Y _{1c}	AAAGCCACTCTGAAGGCTGATTCGGTTCATGCAGATGCA
Y _{2a}	TCAGAGTGGCTTTTGCATCTGCATGACATTCGTCGTAAG
Y _{2b}	CTGTCATCGGTGACTTACGACGAATGACCGAATCAGCCT
Y _{2c}	CTGTCATCGGTGAAGGCTGATTCGGTTCATGCAGATGCA
Y _{3a}	TCACCGATGACAGTGCATCTGCATGACATTCGTCGTAAG
V	AACACATCGAGGTCTTACGACGAATGACCGAATCAGCC
1 _{3b}	Т
Y _{3c}	AACACATCGAGGTAGGCTGATTCGGTTCATGCAGATGCA
Y _{4a}	ACCTCGATGTGTTTGCATCTGCATGACATTCGTCGTAAG
Y _{4b}	TGCTGTCTGTCCACTTACGACGAATGACCGAATCAGCCT
	Cy5-
1 4c-Cy5	TGCTGTCTGTCCAAGGCTGATTCGGTTCATGCAGATGCA
Y _{4c-Bio}	Biotin-
	AAAAAAAAAAAAAAAAAAAAATGCTGTCTGTCCAAGGCT
	GATTCGGTTCATGCAGATGCA
DNA_Cy5	Biotin-
δμινα-υγσ	ААААААААААААААААААААТGCTGTCTGTCCAAGGCT

 Table S1. Oligonucleotides employed in this assay.

GATTCGGTTCATGCAGATGCA-Cy5

Signal amplification	Detection range	Detection limit	References
FL immunosensor based on DNA dendrimers	2.0 ×10 ⁻⁴ -2.0 ng L ⁻¹	0.10 pg L ⁻¹	This work
FL immunosensor based on			
förster resonance energy	0.1-50 ng mL ⁻¹	0.12 ng mL ⁻¹	S1
transfer			
Electrochemical sensor	0.009-0.8 ng mL ⁻¹	9 pg mL ⁻¹	S2
based on a MIP			
Electrochemical sensor	0.01-0.1 ng mL ⁻¹	6 pg mL ⁻¹	S3
based on a N-MIP	-		
Electrochemical immunosensor based on	0.20-1.00 ng mL ⁻¹	0.1 ng mL ⁻¹	S4
SPR immunosensor	0.5-40 ng mL ⁻¹	0.5 ng mL-1	S5
DNA-guided detection			
method based on the 9G	1-120 pg mL ⁻¹	870 pg L ⁻¹	S6
DNAChip platform			

Table S2. An overview of ultrasensitive detection of cTnT using different amplification strategies.

2. Supporting Figures

Fig. S1 (A) Fluorescent image and intensity bar diagram of 0.72 μ M of sDNA-Cy5 (a) and FDD@Cy5 (b) under homogeneous conditions. (B) Fluorescent spectra of 0.72 μ M of sDNA-Cy5 (a) and FDD@Cy5 (b) under homogeneous conditions.

Fig. S2 Effects of incubation times for (A) cTnT and (B) FDD@Cy5 on FL intensity. 0.20 ng L⁻¹ cTnT was used for optimal experiments. Number of experiments was 9.

Fig. S3 Effects of incubation concentrations for (A) Bio-Ab2, (B) SA and (C) FDD@Cy5 on FL intensity. 0.20 ng L⁻¹ cTnT was used for optimal experiments. Number of experiments was 9.

Fig. S4 FL responses from cTnT immunosensor chip to 0.20 ng L⁻¹ cTnT using FDD@Cy5 stored after different days. Number of experiments was 9.

Supporting References

- [1] S. Gogoi and R. Khan, Phys. Chem. Chem. Phys., 2018, 20, 16501–16509.
- [2] N. Karimian, M. Vagin, M. H. A. Zavar, M. Chamsaz, A. P. Turner and A. Tiwari, *Biosens. Bioelectron.*, 2013, 50, 492–498.
- [3] B. V. Silva, B. A. Rodríguez, G. F. Sales, M. D. P. T. Sotomayor and R. F Dutra, *Biosens. Bioelectron.*, 2016, 77, 978–985.
- [4] D. Brondani, J. V. Piovesan, E. Westphal, H. Gallardo, R. A. F. Dutra, A. Spinelli and L. C. Vieira, *Analyst*, 2014, 139, 5200–5208.
- [5] M. Pawula, Z. Altintas and I. E. Tothill, *Talanta*, 2016, 146, 823–830.
- [6] K. S. Song, S. B. Nimse, M. D. Sonawane, Y. H. Lin, Z. Zhou and T. Kim, *Analyst*, 2017, 142, 3816–3821.