Supporting Information for

A Study on the Preparation of Polycation Gel Polymer

Electrolyte for Solid-State Supercapacitors

Hao Guo,^a Longli Ma,^b Chaojing Yan,^b and Xiaohua Ma*^b

^a Department of Chemistry, ^b Department of Materials Science, Fudan University,

Shanghai 200433, China

E-mail: xhma@fudan.edu.cn

Table S1. The ionic conductivity of reported hydrogels ¹⁻⁹ and PGPE of this work.

Sample	Conductivity	Temperature	Ref.
	$(mS cm^{-1})$		
PAMPS/PAA	3.34	RT	1
PAAm/Gelatin (15%Na ₃ Cit)	15	RT	2
PAM-AA/CNF/Fe ³⁺ (1.5%LiCl)	22	RT	3
Chitosan+poly(diallyldimethylammonium	24	30 °C	4
chloride) (KOH)			
PVA (H ₃ PO ₄)	34	30 °C	5
P(NVP-co-DMDAAC)/PVA (KOH)	36.6	25 °C	6
B-PVA (GO + KCl)	47.5	RT	7
This work	57.6	25 °C	
C ₃ (Br)DMAEMA/PEGMA (Li ₂ SO ₄)	66.8	25 °C	8
Carboxylated chitosan (HCl)	86.9	RT	9

(EO) ₆ (Cl)DMAEMA :	Li ₂ SO ₄ /H ₂ O	Conductivity Machanical properties		
PEGMA(mass ratio)	$(mol L^{-1})$	$(mS cm^{-1})$	Mechanical properties	
	0.5	47.8	A little brittle	
7.2	1	50.4	A little brittle	
7:3	1.5	40.2	Brittle	
	2	38.0	Brittle	
	0.5	53.3	Stretchable	
9.2	1	57.6	Stretchable	
8:2	1.5	47.5	A little hard	
	2	45.1	Hard	
	0.5	52.7	Stretchable	
0.1	1	56.4	Stretchable	
9.1	1.5	44.9	Hard	
	2	43.5	Hard	

|--|

Figure S1. The liquid conservation rate of PGPE and PDPA within 2 weeks.

Figure S2. (a) Curve of ionic conductivity of PGPE within 30 days; (b) Curve of ionic conductivity of PDPA within 30 days.

Figure S3. The potential window of PGPE SC.

Figure S4. (a) CV curves of PDPA SC (scan rate from 10 mV s⁻¹ to 200 mV s⁻¹). (b)

GCD curves of PDPA SC (current densities from 0.5 A g^{-1} to 10 A g^{-1}).

Figure S5. (a) The ionic conductivity of PGPE with different CNTs content at 25 °C. (b) The potential window of PGPE SC with different CNTs content. (c) GCD curves of PGPE SC and 1%-CNTs-PGPE SC at different current densities (from 0.5 to 10 A g-1). (d) Ragone plots of PGPE SC and 1%-CNTs-PGPE SC.

References

- C. W. Tu, F. C. Tsai, J. K. Chen, H. P. Wang, R. H. Lee, J. W. Zhang, T. Chen, C. C. Wang and C. F. Huang, *Polymers*, 2020, **12**, 2835.
- X. Sun, F. L. Yao, C. Y. Wang, Z. H. Qin, H. T. Zhang, Q. Y. Yu, H. Zhang, X. R. Dong, Y. P. Wei and J. J. Li, *Macromolecular Rapid Communications*, 2020, 41, 2000185.
- L. H. Geng, S. S. Hu, M. Cui, J. M. Wu, A. Huang, S. Shi and X. F. Peng, Carbohydrate Polymers, 2021, 262, 117936.
- 4. Y. A. Wei, M. Wang, N. N. Xu, L.W. Peng, J. F. Mao, Q. J. Gong and J. L. Qiao, *ACS applied materials & interfaces*, 2018, **10**, 29593-29598.
- 5. C. Zhao, C. Wang, Z. Yue, K. Shu and G. G. Wallace, *ACS applied materials* & *interfaces*, 2013, **5**, 9008-9014.
- 6. J. Wang, M. D. Deng, Y. H. Xiao, W. T. Hao and C. F. Zhu, *New Journal of Chemistry*, 2019, **43**, 4815-4822.

- H. Peng, Y. Y. Lv, G. G. Wei, J. Z. Zhou, X. J. Gao, K. J. Sun, G. F. Ma and Z.
 Q. Lei, *Journal of Power Sources*, 2019, 431, 210-219.
- C. J. Yan, M. Y. Jin, X. X. Pan, L. L.Ma, X. H. Ma, *RSC Advances*, 2020, 10, 9299.
- 9. H. Z. Yang, Y. Liu, L. B. Kong, L. Kang and F. Ran, *Journal of Power Sources*, 2019, **426**, 47-54.