Direct enantioseparation of axially chiral 1,1'-biaryl-2,2'-diols

using amidine-based resolving agents

Koichi Kodama,*a Fusato Takase ${ }^{\text {a }}$ and Takuji Hirose ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University

Table of Contents

Figures S1-S4, Table S1	S2-S6
Experimental details	$\mathrm{S} 7-\mathrm{S} 14$
References	S 15
Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR charts and IR spectra	$\mathrm{S} 16-\mathrm{S} 53$
Copies of HPLC chromatograms	$\mathrm{S} 54-\mathrm{S} 60$

Figure S1. IR spectra of the chiral amidine (2a), phenol (1a) and their equimolar mixture.

Figure S2. IR spectra of a) benzamidine, 4-nitrophenol and their equimolar mixture and b) chiral amidine (2a), 4-nitrophenol and their equimolar mixture.

Figure S3. Crystal structure of the salt of benzamidine and 4-nitrophenol viewed from the b axis. Oxygen and nitrogen atoms are represented by red and blue. The dotted lines show hydrogen bonds.

Figure S4. IR spectra of the chiral amidine (2c), 1, ''-binaphthyl-2,2'-diol (1a) and their equimolar mixture.

Table S1. Summary of crystallographic data reported in this study.

	2a-2(S)-1a	benzamidine - 4-nitrophenol	2c - (R)-1a
empirical formula	$\mathrm{C}_{63} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}$
formula weight	901.06	259.26	584.77
temperature (K)	150	150	150
crystal size (mm)	$0.13 \times 0.12 \times 0.04$	$0.23 \times 0.07 \times 0.03$	$0.21 \times 0.16 \times 0.08$
crystal system	orthorhombic	monoclinic	orthorhombic
space group	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1}$	$P 2_{1} 2_{1} 2_{1}$
$a(A)$	10.0606(15)	9.4244(13)	10.6751(15)
$b(A)$	20.736(3)	5.0509(7)	12.6375(17)
$c(A)$	22.810(3)	13.2982(18)	23.647(3)
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	90	100.928(2)	90
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	4758.6(12)	621.54(15)	3190.1(8)
Z	4	2	4
Dc ($\mathrm{g} / \mathrm{cm}^{3}$)	1.258	1.385	1.218
$\mu\left(\mathrm{Mo}_{\text {ка }}\right)\left(\mathrm{mm}^{-1}\right)$	0.078	0.101	0.074
$\theta_{\text {min/max }}\left({ }^{\circ}\right)$	1.327/24.997	1.560/24.987	1.722/27.478
$R 1\left[F_{0}>2 \sigma\left(F_{0}\right)\right]$	0.0419	0.0518	0.0416
$w R 2\left(\right.$ all $F_{0}{ }^{2}$)	0.0754	0.1366	0.0901
GOF	0.794	1.037	0.950
measured reflns	22966	2944	18184
independent reflns	8364	1955	7201
observed reflns	5316	1891	5929
reflns used	8364	1955	7201
parameters	644	188	421
CCDC number	2057487	2057488	2057489

Experimental details

General and Materials

All the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured using 300 , 400 , or 500 MHz spectrometers. IR spectra were reported in reciprocal centimeters. Melting points are uncorrected. Optical rotation values were measured with a polarimeter. All commercially available reagents and solvents were purchased and used as received unless noted. Dry THF was freshly distilled from sodium under a nitrogen atmosphere. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dry CCl_{4} were distilled after drying over CaCl_{2} and stored with Molecular Sieves 4A under a nitrogen atmosphere. Dry triethylamine was distilled after drying over KOH and stored with KOH under a nitrogen atmosphere. Dry toluene was distilled from sodium under a nitrogen atmosphere and stored with sodium under a nitrogen atmosphere. Dry EtOH was distilled from sodium under a nitrogen atmosphere and stored with Molecular Sieves 4A under a nitrogen atmosphere. The enantiomeric excess of the compounds was determined by chiral HPLC analysis (Daicel Chiralcel OD-3 column $4.6 \times 250 \mathrm{~mm}$ or Chiralpak AS-3 column $2.1 \times 250 \mathrm{~mm}$) with UV detection at 254 nm .

Synthesis and characterization

(S)-N-(1-phenylethyl)benzamide (4). ${ }^{1}$ To a vigorously stirred mixture of (S)-1-phenylethylamine (3) ($2.81 \mathrm{~g}, 23.2 \mathrm{mmol}$) and $\mathrm{NaOH}(1.29 \mathrm{~g}, 32.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added dropwise benzoylchloride ($3.62 \mathrm{~g}, 25.8 \mathrm{mmol}$) over 10 min at $0^{\circ} \mathrm{C}$. After the suspension was stirred for 2 h at room temperature, the white precipitate was filtered, washed several times with $\mathrm{H}_{2} \mathrm{O}$ and then dried in vacuo. The desired product $4(4.24 \mathrm{~g}, 18.8 \mathrm{mmol}, 81 \%)$ was obtained as a white solid. Mp : $118.5-120.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{17}=+7.2^{\circ}(\mathrm{c} 0.251, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.84-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.42-6.18(\mathrm{br}, 1 \mathrm{H}), 5.44-5.26(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 3451,3331,1634,1523,1490,1319,758,700$.
$(S, S)-N, N^{\prime}-b i s\left(\mathbf{1}-\mathrm{phenyl}\right.$ ethyl)benzamidine (2a). ${ }^{\mathbf{1}}$ A solution of $\mathbf{4}(0.903 \mathrm{~g}, 4.01 \mathrm{mmol})$ and 2,6-lutidine ($0.647 \mathrm{~g}, 6.04 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Oxalyl chloride (0.543 $\mathrm{g}, 4.28 \mathrm{mmol})$ diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added to the solution over 30 min . Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 30 min , and the solution was allowed to warm to room temperature and stirred for $30 \mathrm{~min} .3(0.490 \mathrm{~g}, 4.04 \mathrm{mmol})$ diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added to the solution over 30 min at room temperature. The reaction mixture was refluxed for 24 h , and then concentrated under reduced pressure. The residue was dissolved in AcOEt (20 mL) and extracted with 1 N HCl aq. ($10 \mathrm{~mL} \times 15$). The aqueous phase was basified with 6 N NaOH aq. and extracted with $\mathrm{CHCl}_{3}(5 \mathrm{~mL} \times 5)$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was suspended in hexane, and the resulting solid
was collected by filtration. The crude product $(0.530 \mathrm{~g})$ was recrystallized from EtOH (0.8 mL) and the desired product $\mathbf{2 a}(0.441 \mathrm{~g}, 1.34 \mathrm{mmol}, 33 \%)$ was obtained as colorless crystals. Mp: $124.3-125.0^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{24}=-48.5^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 7.52-6.72$ $(\mathrm{m}, 15 \mathrm{H}), 6.70-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.12-3.96(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3060,2955,2877,1637,1599,1494,1484,1451,1361,1349$, 1309, 1268, 1142, 1090, 766, 699.
(S)-2-(6-methoxy-2-naphthyl)propionamide (6). ${ }^{\mathbf{2}}$ Oxalyl chloride (3.0 mL) and DMF (3 drops) were added to (S)-2-(6-methoxy-2-naphthyl)propanoic acid (5) $(2.32 \mathrm{~g}, 10.1 \mathrm{mmol})$ under a nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$, and the resulting solution was refluxed for 2 h . After the excess of oxalyl chloride was distilled off, dry toluene (20 mL) and $28 \% \mathrm{NH}_{3}$ aq. (4 mL) were added at $0{ }^{\circ} \mathrm{C}$. After the resulting suspension was stirred at room temperature for 1 h , the white precipitate formed was filtered, washed several times with $\mathrm{H}_{2} \mathrm{O}$ and then dried in vacuo. The desired product 6 ($2.21 \mathrm{~g}, 9.63$ $\mathrm{mmol}, 96 \%,>99 \%$ ee) was obtained as a white solid, which was used for next step without further purification. Mp: 177.0-179.0 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{22}=+33.3^{\circ}(\mathrm{c} 0.195, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.80-7.66 (m, 3H), 7.44-7.34 (m, 1H), 7.20-7.08 (m, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3348,3195,2983,2898,1660,1606,1505,1486$, 1461, 1403, 1309, 1267, 1228, 1217, 1173, 1114, 1027, 927, 894, 854, 814. HPLC analysis (Daicel Chiralcel OD-3, hexane $/ 2$-propanol $=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector; $t_{\mathrm{r}}(S)=10.3 \mathrm{~min}, t_{\mathrm{r}}(R)$ $=16.4 \mathrm{~min}$).
(S)-2-(6-methoxy-2-naphthyl)propionitrile (7). ${ }^{\mathbf{3}}$ To a stirred solution of $\mathbf{6}(0.300 \mathrm{~g}, 1.31 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added $\mathrm{PPh}_{3}(0.420 \mathrm{~g}, 1.60 \mathrm{mmol})$, dry triethylamine $(0.161 \mathrm{~g}, 1.59 \mathrm{mmol})$ and dry $\mathrm{CCl}_{4}(0.246 \mathrm{~g}, 1.60 \mathrm{mmol})$ under a nitrogen atmosphere. The solution was refluxed for 20 h . After the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated, washed with 1 N HCl aq., dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product $(0.875 \mathrm{~g})$ was purified by silica gel column chromatography (eluent: CHCl_{3}). The desired product $7(0.244 \mathrm{~g}, 1.15 \mathrm{mmol}, 88 \%$, $>99 \%$ ee) was obtained as a pale yellow solid. Mp : $98.7-100.0^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{17}=-28.9^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.84-7.68(\mathrm{~m}$, $3 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 H)$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3065,3020,2992,2963,2942,2905,2840,2240,1916,1777,1712,1632$, 1604, 1506, 1483, 1448, 1419, 1393, 1376, 1356, 1260, 1214, 1188, 1165, 1085, 1024, 960, 927, 891, 856. HPLC analysis (Daicel Chiralpak AS-3, hexane/2-propanol=99.5:0.5, $0.3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector; $\left.t_{\mathrm{r}}(S)=34.6 \mathrm{~min}, t_{\mathrm{r}}(R)=41.2 \mathrm{~min}\right)$.
(S)-N-hydroxy-2-(6-methoxy-2-naphthyl)propionamidine (8). To a stirred solution of 7 (1.14 g, $5.40 \mathrm{mmol})$ in dry EtOH (3 mL) and dry DMF (3 mL) were added $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}(1.13 \mathrm{~g}, 16.3 \mathrm{mmol}$) and dry triethylamine $(1.65 \mathrm{~g}, 16.3 \mathrm{mmol})$, and then the solution was refluxed under a nitrogen
atmosphere for 10 h . After cooling to room temperature, the solution was concentrated under reduced pressure. The residue was dissolved in $\mathrm{AcOEt}(40 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O} /$ sat. NaCl aq. $=1 / 1$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product (0.893 g) was purified by silica gel column chromatography (eluent: $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1, \mathrm{v} / \mathrm{v}\right)$. The desired product $\mathbf{8}(0.272 \mathrm{~g}, 1.11 \mathrm{mmol}, 21 \%, 51 \% \mathrm{ee})$ was obtained as a white solid. Mp: $142.0-143.5^{\circ} \mathrm{C}(21 \%$ ee $) .[\alpha]_{D}^{18}=-10.5^{\circ}(\mathrm{c} 0.506, \mathrm{MeOH})(21 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.80-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.26(\mathrm{br}$, $2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 157.7, 156.6, 136.9, 133.8, 129.2, 128.9, 127.5, 126.2, 125.6, 119.1, 105.7, 55.3, 41.8, 18.0. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3479,3372,3268,3055,2976,2936,1663,1637,1607,1586,1505,1486,1460$, 1449, 1418, 1390, 1266, 1231, 1216, 1192, 1174, 1160, 1124, 1078, 1026, 921, 889, 849. HPLC analysis (Daicel Chiralcel OD-3, hexane $/ 2$-propanol $=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector; $t_{\mathrm{r}}(S)=$ $\left.10.5 \mathrm{~min}, t_{\mathrm{r}}(R)=13.1 \mathrm{~min}\right)$.
(S)-N-acetoxy-2-(6-methoxy-2-naphthyl)propionamidine (9). To a stirred solution of $\mathbf{8}$ (0.267 g , $1.10 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ were added pyridine $(0.111 \mathrm{~g}, 1.40 \mathrm{mmol})$ and acetic anhydride $(0.135 \mathrm{~g}$, $1.32 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and then the solution was stirred at room temperature for 1 h . After the solvent was distilled off, the residue was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, and washed with 1 N HCl aq., sat. NaHCO_{3} aq. and sat. NaCl aq. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The desired product $9(0.301 \mathrm{~g}, 1.05 \mathrm{mmol}, 96 \%, 51 \% \mathrm{ee})$ was obtained as a white solid, which was used for next step without further purification. Mp: $105.0-108.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.80-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.08 (m, 2H), 4.66-4.42 (br, 2H), 4.04-3.84 (m, 4H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 168.8,160.3,157.9,135.4,133.9,129.2,128.9,127.6,126.2$, $125.5,119.3,105.7,55.4,41.3,19.9,17.7$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3449,3332,3196,3060,2962,2936$, 2841, 1744, 1627, 1505, 1486, 1464, 1439, 1418, 1392, 1371, 1266, 1227, 1173, 1119, 1027, 1010, 957, 927, 885, 855, 814. HPLC analysis (Daicel Chiralcel OD-3, hexane/2-propanol=80:20, 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector; $\left.t_{\mathrm{r}}(S)=13.8 \mathrm{~min}, t_{\mathrm{r}}(R)=30.7 \mathrm{~min}\right)$.

2-(6-methoxy-2-naphthyl)propionamidine (2b). A suspension of 9 ($0.720 \mathrm{~g}, 2.51 \mathrm{mmol}$) and 10% Pd-C $(0.173 \mathrm{~g})$ in EtOH (30 mL) was stirred under a hydrogen atmosphere at room temperature for 2 h. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue $(0.752 \mathrm{~g})$ was recrystallized from $\mathrm{MeOH}(8.5 \mathrm{~mL})$ to give the acetate salt of the product as a solid. The separated filtrate was concentrated under reduced pressure and the residue was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 0.5 \mathrm{~mL})$. The combined solid was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and 1 N NaOH aq. (20 mL) was added. The aqueous layer was separated and extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times$ 5). The combined organic layer was washed with sat. NaCl aq., dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The desired product $\mathbf{2 b}(0.597 \mathrm{~g}, 2.07 \mathrm{mmol}, 83 \%$,
racemic) was obtained as a white solid. Mp: 125.0-129.0 ${ }^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}^{26}=0^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.80-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, 3.73 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3321,3163,2966,1684,1635$, 1606, 1505, 1485, 1455, 1436, 1392, 1264, 1216, 1163, 1030, 927, 891, 853.
dehydroabietyl amide (11). ${ }^{4}$ To a stirred solution of dehydroabietic acid (10) ($2.01 \mathrm{~g}, 6.09 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) were added DMF (3 drops) and oxalyl chloride (1.5 mL) under a nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$, and the solution was refluxed for 2 h . After the volatile components were distilled off, dry toluene (10 mL) and $28 \% \mathrm{NH}_{3}$ aq. (3 mL) were added at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 2 h , and then was added to AcOEt (100 mL) and $\mathrm{H}_{2} \mathrm{O}$ (50 mL). The organic layer was separated and washed with sat. NaHCO_{3} aq. and sat. NaCl aq. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The desired product $11(1.95 \mathrm{~g}, 6.50 \mathrm{mmol}, 97 \%)$ was obtained as a pale yellow solid, which was used for next step without further purification. Mp: 153.0-156.0 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}=+41.1^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.22-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 1 \mathrm{H})$, 5.90-5.60 (br, 1H), 5.50-5.20 (br, 1H), 2.96-2.85 (m, 2H), 2.85-2.73 (m, 1H), 2.39-2.25 (m, 1H), 2.16-2.04 (m, 1H), 1.90-1.40 (m, 7H), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 9 \mathrm{H})$. IR (KBr): v ($\left.\mathrm{cm}^{-1}\right) 3428,3328$, 2927, 2867, 1629, 1575, 1498, 1456, 1383, 1362, 1085, 1036, 905, 883, 822.
dehydroabietyl cyanide (12). ${ }^{5}$ To a stirred solution of $\mathbf{1 1}(5.49 \mathrm{~g}, 18.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) were added $\mathrm{PPh}_{3}(7.20 \mathrm{~g}, 27.4 \mathrm{mmol})$, dry triethylamine ($2.78 \mathrm{~g}, 27.4 \mathrm{mmol}$) and dry $\mathrm{CCl}_{4}(4.23$ $\mathrm{g}, 27.5 \mathrm{mmol}$) under a nitrogen atmosphere. The solution was refluxed for 17 h . After the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated, washed with 1 N HCl aq., dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product (14.8 g) was purified by silica gel column chromatography (eluent: hexane/ $\mathrm{CHCl}_{3}=1 / 1$, v / v). The desired product 12 ($4.77 \mathrm{~g}, 16.9 \mathrm{mmol}, 93 \%$) was obtained as a white solid. $\mathrm{Mp}: 77.0-80.0^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{26}=+37.0^{\circ}(\mathrm{c}$ $1.00, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.20-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.86$ $(\mathrm{m}, 1 \mathrm{H}), 3.10-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 146.2,145.4,134.2$, 127.0, 126.6, 124.2, 124.0, 46.8, 37.5, 37.4, 37.3, 37.2, 33.5, 29.8, 25.2, 23.9, 21.7, 18.9, 17.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3010,2930,2930,2863,2225,1612,1496,1458,1419,1383,889,819 . \mathrm{MS}$ (MALDI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}+\mathrm{Na}^{+}$: 304.204 [M+Na] ${ }^{+}$; found: 304.245.
N-hydroxy-dehydroabietyl amidine (13). To a stirred solution of $\mathbf{1 2}$ ($4.76 \mathrm{~g}, 16.9 \mathrm{mmol}$) in dry $\mathrm{EtOH}(35 \mathrm{~mL})$ were added $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}(5.89 \mathrm{~g}, 84.8 \mathrm{mmol})$ and dry triethylamine $(8.58 \mathrm{~g}, 84.8$ mmol), and then the solution was refluxed under a nitrogen atmosphere for 28 h . After cooling to room temperature, the solution was concentrated under reduced pressure. The residue was dissolved in $\mathrm{AcOEt}(100 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}$ and sat. NaCl aq. The organic layer was dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product (5.76 g) was purified by silica gel column chromatography (eluent: hexane $/ \mathrm{AcOEt}=2 / 1, \mathrm{v} / \mathrm{v}$). The desired product $13(1.66 \mathrm{~g}, 5.29 \mathrm{mmol}, 31 \%)$ was obtained as a white solid. $\mathrm{Mp}: 89.7-91.7^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{24}=$ $+86.2^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.22-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 1 \mathrm{H})$, 6.94-6.84 (m, 1H), 4.80-4.48 (br, 2H), 2.98-2.74 (m, 3H), 2.45-2.28 (m, 1H), 2.00-1.56 (m, 8H), $1.34-1.18(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 160.0,147.2,145.9,134.8,127.0,124.0$, $123.9,46.3,42.8,38.3,37.5,37.4,33.5,30.0,25.5,24.0,20.1,18.7,16.0$. IR (KBr): v (cm^{-1}) 3500 , $3399,3255,2930,1651,1575,1497,1457,1382,1362,1230,1197,1173,1140,1074,923,822 . \mathrm{MS}$ (MALDI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}^{+}: 315.244[\mathrm{M}+\mathrm{H}]^{+}$; found: 315.242.

N -acetoxy-dehydroabietyl amidine (14). To a stirred solution of $\mathbf{1 3}$ ($1.64 \mathrm{~g}, 5.21 \mathrm{mmol}$) in THF (44 mL) were added pyridine $(0.503 \mathrm{~g}, 6.36 \mathrm{mmol})$ and acetic anhydride $(0.638 \mathrm{~g}, 6.25 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and then the solution was stirred at room temperature for 1 h . After the solvent was distilled off, the residue was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, and washed with 1 N HCl aq., sat. NaHCO_{3} aq. and sat. NaCl aq. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The desired product $14(1.69 \mathrm{~g}, 4.73 \mathrm{mmol}, 91 \%)$ was obtained as a white solid, which was used for next step without further purification. Mp: 125.8-127.8 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{24}=+66.6^{\circ}(\mathrm{c}$ $1.00, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.24-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.86$ $(\mathrm{m}, 1 \mathrm{H}), 4.86-4.64(\mathrm{br}, 2 \mathrm{H}), 2.98-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.62(\mathrm{~m}, 8 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 169.7, $163.5,147.0,145.9,134.6,127.0,124.0,124.0,46.4,43.5,38.1,37.9,37.4,33.5,30.0,25.5,24.0$, 20.4, 20.2, 18.6, 16.0. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3501,3378,2957,2869,1743,1626,1582,1497,1459$, 1384, 1364, 1231, 1008, 939, 882, 822. MS (MALDI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}: 379.236$ $[\mathrm{M}+\mathrm{Na}]^{+}$; found: 379.217.
dehydroabietyl amidine (2c). A suspension of $14(1.68 \mathrm{~g}, 4.72 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(0.614 \mathrm{~g})$ in $\mathrm{EtOH}(60 \mathrm{~mL})$ was stirred under a hydrogen atmosphere at room temperature for 1 day. Pd-C was filtered off and the filtrate was concentrated under reduced pressure. The residue was suspended in hexane, and the resulting solid was collected by filtration. The residue (1.44 g) was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and sat. NaHCO_{3} aq. (70 mL) was added. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$. The combined organic layer was washed with sat. NaCl aq., dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The desired product $2 \mathrm{c}(1.22 \mathrm{~g}$, $4.09 \mathrm{mmol}, 87 \%$) was obtained as a white solid. Mp: 76.7-79.7 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}=+54.7^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 7.24-7.12 $(\mathrm{m}, 1 \mathrm{H}), 7.08-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 1 \mathrm{H})$, $3.00-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.38(\mathrm{~m}, 8 \mathrm{H}), 1.27,(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.2$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 174.8,147.0,146.0,134.5,127.0,124.1,124.0,46.8$, $45.6,38.2,38.1,37.3,33.5,29.9,25.3,24.0,20.5,19.0,16.8$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3345,2958,2869$, 1634, 1577, 1497, 1459, 1382, 1363, 1201, 1171, 822. MS (MALDI-TOF) m/z calcd for
(rac)-6,6'-dibromo-1,1'-bi-2-naphthol (1b). ${ }^{6}$ Rac-1,1'-bi-2-naphthol (1a) ($1.00 \mathrm{~g}, 3.49 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under a nitrogen atmosphere. After the mixture was cooled to $-10{ }^{\circ} \mathrm{C}$, bromine ($1.51 \mathrm{~g}, 9.45 \mathrm{mmol}$) diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise over 30 min and the solution was stirred for an additional 2.5 h . After the solution was gradually warmed to room temperature and stirred for another 1 h , the reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ aq. (25 mL). The aqueous phase was extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 3)$ and the combined organic phase was washed with sat. NaCl aq. dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product (1.59 g) was recrystallized from toluene/heptane ($7 \mathrm{~mL} / 5 \mathrm{~mL}$) and the desired product $\mathbf{1 b}(1.11 \mathrm{~g}, 2.51 \mathrm{mmol}, 72 \%)$ was obtained as colorless needles. $\mathrm{Mp}: 206.0-207.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.32(\mathrm{~m}$, $4 \mathrm{H}), 6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3451,2952,1612,1586,1502,1466$, 1407, 1382, 1350, 1319, 1268, 1216, 1162, 1145, 1125, 1066, 951, 930, 876, 811.
(rac)-6,6'-dimethyl-2,2'-bisphenol (1c). ${ }^{7}$ To a solution of 4,6-di-tert-butyl-4-methylphenol (1.01 g , $4.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ were added $\mathrm{CuCl}(45.5 \mathrm{mg}, 0.460 \mathrm{mmol})$ and $N, N, N ', N$ '-tetramethylethylenediamine ($80.1 \mathrm{mg}, 0.689 \mathrm{mmol}$). The suspension was stirred under air at room temperature for 8 h . After addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ to the reaction mixture, the whole was extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The organic phase was washed with sat. NaCl aq. and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product (1.19 g) was purified by silica gel column chromatography (eluent: hexane/ $\mathrm{CHCl}_{3}=1 / 1$, v / v) to afford rac-3,3',5,5'-tetra-tert-butyl-6,6'-dimethyl-2,2'-bisphenol ($0.594 \mathrm{~g}, 1.35 \mathrm{mmol}, 59 \%$) as a white solid. Mp: 244.0-245.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.39(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.00(\mathrm{~s}$, $6 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H})$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3504,2991,2959,2909,2871,1560,1470$, 1414, 1395, 1362, 1332, 1280, 1254, 1233, 1196, 1167, 1116, 1033, 927.

To a solution of (rac)-3,3',5,5'-tetra-tert-butyl-6,6'-dimethyl-2,2'-bisphenol ($0.303 \mathrm{~g}, 0.691 \mathrm{mmol}$) in dry toluene (5 mL) was added $\mathrm{AlCl}_{3}(39.2 \mathrm{mg}, 0.294 \mathrm{mmol})$ in small portions at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The suspension was stirred at $50^{\circ} \mathrm{C}$ for 18 h , and $\mathrm{AlCl}_{3}(99.3 \mathrm{mg}, 0.745 \mathrm{mmol})$ was added to the suspension at $0^{\circ} \mathrm{C}$. The suspension was stirred at $50^{\circ} \mathrm{C}$ for 3 h , and $\mathrm{AlCl}_{3}(58.8 \mathrm{mg}$, 0.441 mmol) was added to the suspension at $0^{\circ} \mathrm{C}$. The suspension was stirred at $50^{\circ} \mathrm{C}$ for 3 h , and $\mathrm{AlCl}_{3}(58.4 \mathrm{mg}, 0.438 \mathrm{mmol})$ was added to the suspension at $0{ }^{\circ} \mathrm{C}$. After the suspension was stirred at $50{ }^{\circ} \mathrm{C}$ for 13 h , the suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and carefully quenched by addition of $\mathrm{H}_{2} \mathrm{O}(14$ mL) and 3 N HCl aq. (56 mL). The organic phase was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic phase was extracted with 3 N NaOH aq. (10 $\mathrm{mL} \times 3$). The aqueous phase was acidified with 6 N HCl aq. and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced
pressure. The desired product $\mathbf{1 c}(0.145 \mathrm{~g}, 0.677 \mathrm{mmol}, 98 \%)$ was obtained as a white solid. Mp : 159.7-162.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.32-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.86(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~s}$, 2H), 2.01 ($\mathrm{s}, 6 \mathrm{H}$). IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3464,3413,3034,2973,2915,1605,1575,1465,1378,1335$, 1281, 1261, 1180, 1090, 1025, 1006, 947, 883.
(rac)-1-[hydroxy(phenyl)methyl]-2-naphthol (1d). ${ }^{\mathbf{8}}$ To a stirred suspension of Mg turnings (0.304 $\mathrm{g}, 12.5 \mathrm{mmol}$) in dry THF (4 mL) under a nitrogen atmosphere was added dropwise a solution of bromobenzene ($1.96 \mathrm{~g}, 12.5 \mathrm{mmol}$) in dry THF (9 mL) over 1.5 h at room temperature. After formation of the Grignard reagent has started, the suspension was stirred at room temperature for 30 min , and then refluxed for 1 h . After cooling with an ice bath, 2-hydroxy-1-naphthaldehyde (0.861 g , 5.00 mmol), which was dissolved in dry THF (5.5 mL), was added dropwise to the mixture over 30 min and the suspension was stirred for 2 h at room temperature. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (5 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and the whole was extracted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL} \times 3)$. The organic phase was washed with sat. NaCl aq., dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: hexane $/ \mathrm{AcOEt}=4 / 1, \mathrm{v} / \mathrm{v}$). The desired product $\mathbf{1 d}(1.23 \mathrm{~g}, 4.91 \mathrm{mmol}$, 98%) was obtained as a white solid. Mp: 118.5-120.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.21$ ($\mathrm{s}, 1 \mathrm{H}$), $7.82-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.12(\mathrm{~m}, 8 \mathrm{H}), 6.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3363,3029,1625,1602,1521,1469,1455,1411,1326,1265,1226,1154,1065$, 1011, 939, 830.

Enantiomer separation of phenols (1) with chiral amidines (2)

Equimolar amounts of $\mathbf{2}$ and rac- $\mathbf{1}(0.250 \mathrm{mmol})$ were dissolved in MeOH or CHCl_{3}, and the solution was concentrated under reduced pressure to give a salt. An appropriate solvent was added to the salt with heating until a homogeneous solution was formed. The solution was gradually cooled to room temperature and left at the temperature for several days to induce crystallization. The salt $\mathbf{1 - 2}$ was collected by filtration and dried in vacuo at room temperature. The yield was calculated based on a half amount of rac-1 initially used. A part of the salt was dissolved in ethyl acetate, and the organic phase was washed with 1 N HCl aq. to remove 2 . The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel preparative TLC to give $\mathbf{2}$. The enantiomeric excess of $\mathbf{2}$ was determined by chiral HPLC analysis. 1a (Column: Chiralcel OD-3, Eluent: 2-propanol/ hexane $=1 / 9$, Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, Detection: 254 nm , Retention time: $\left.\mathrm{t}_{\mathrm{r}}(S)=29.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(R)=30.7 \mathrm{~min}\right) .1 \mathrm{~b}$ (Column: Chiralcel OD-3, Eluent: 2-propanol/ hexane $=1 / 9$, Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, Detection: 254 nm , Retention time: $\mathrm{t}_{\mathrm{r}}\left(1^{\text {st }}\right)=15.6$ $\left.\min , \mathrm{t}_{\mathrm{r}}\left(2^{\text {nd }}\right)=35.0 \mathrm{~min}\right) . \mathbf{1 c}$ (Column: Chiralcel OD-3, Eluent: 2 -propanol/ hexane $=1 / 9$, Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, Detection: 254 nm , Retention time: $\left.\mathrm{t}_{\mathrm{r}}(S)=17.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(R)=32.1 \mathrm{~min}\right)$.

Single crystals suitable for X-ray diffraction analysis were prepared by slow evaporation of the saturated solutions of the salt. X-ray crystallographic data were collected on a Bruker Smart APEX II diffractometer with graphite monochromated Mo K α radiation. Data collections were carried out at 150 K. The structures were solved by a direct method (SIR 2014) and refined by SHELXL-2013 or SHELXL-2018 programs. ${ }^{9}$ Crystallographic information files have been deposited with the Cambridge Structural Database.

References

1) ref 12 b in the manuscript.
2) refs 23 in the manuscript.
3) refs 24 in the manuscript.
4) ref 25 in the manuscript.
5) ref 26 in the manuscript.
6) ref 27 in the manuscript.
7) refs 28 in the manuscript.
8) ref 29 in the manuscript.
9) ref 30 in the manuscript.

NAME EXPNO
PROCNO PROCNO
Date_ TimeINSTRUM PROBHD PULPROG
TD
SOLVENT
NS
DS
SWH
SWH
FIDRES
AQ
AQ
RG
RG
DW
DE

TE
D1 D1
TD0

17062301
20170623 9.35 5 mm sabsoct 5 mm PABBO BBzg30
65536 6536 CDC13
0.094423 Hz
5.2953587 sec

203
80.800 usec 6.50 usec 296.1

$$
1.00000000 \mathrm{sec}
$$

======== CHANNEL f1
NUC1
P1
PL1W
SFO
SF
SSB
LB
GB
PC
1 H
15.00 usec
8.19348145 dB
300.1318534 MHz
300.1300059 MHz

EM
0
0.30 Hz .
1.00

積算回数
だイングイン
ゲイン
測定日時
測定者
ファイル名
サンプル名
コメント
$\begin{array}{rrr}1: & 3450.99, & 82.11 \\ 5: & 1489.74, & 88.71 \\ 9: & 413.66, & 89.75\end{array}$

積算回数
ゼロフィリング
ゲイン
測定昌時
測定者
ファ名
サンプル名
コメントト

16
0 N

積算回数
セロフン
ゲイン
測定日時
則定者
ファイル名
サンプル名
コメント

16 $0 N$
 8 8 8
 2017／12／23 12：17
 takase
 Memory\＃2
 naproxene amide

分解	$4 \mathrm{~cm}-1$
アポダイゼーション	Cosine
スキャンスピード	$2 \mathrm{~mm} / \mathrm{sec}$
更新日時	$2017 / 12 / 23 \quad 12: 17$

積算回数
ゼロブィリング
ゲイン
測定日時
浿者
ファイル名
サンプル名
コメント
16
0 N
8
2017／12／23 12：07 takase
Memory\＃2
naproxene nitrile
分解
アポイゼーション
スキャンスピード
更新日時
$4 \mathrm{~cm}-1$
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$
$2017 / 12 / 23 \quad 12: 08$

1	3065． 30 ，	68.69	2 ：	3019．98，	66.91	3	2992．02．	51.16	4：	2963．09，	46． 98
$5:$	2941．88，	50.67	$6:$	2905． 24,	63.49	7	2840.63 ，	67.05	8：	2239.91 ，	42.36
9 ：	1915．93，	68.52	10：	1777．08，	72.54	11	1712．48，	74.52	12：	1632． 45 ，	59． 39
13：	1604． 48 ，	29． 18	14：	1506．13，	52.65	15	1482．99．	44.21	16：	1448． 28 ，	49.27
17：	1419．35，	62.59	18：	1393．32，	50.67	19	1375．96，	61.97	$20:$	1355．71，	65.75
21：	1260． 25 ，	30.81	$22:$	1213．97，	23.95	23	1187．94，	56.92	$24:$	1164． 79.	40.68
$25:$	1084．76，	64.80	26 ：	1059．69，	88.07	27	1024．02，	25.39	$28:$	960.38 ，	65.22
29 ：	926．63，	65.72	$30:$	890．95，	38.36	31	856． 24 ，	16． 01	$32:$	816．71，	29． 20
$33:$	750.17.	69.58	$34:$	674.96 ，	58.15	35	629.64 ，	73.51	36：	592.04 ，	73.25
37：	523．58，	73.80	38：	476．33，	44.80						

16
0 N
16
16
2018／01／11 10：33
takase
Memory\＃2
$\mathrm{N}-\mathrm{OH}$ naproxen amidine

分解
分解ダイゼーション
スキャンスピード
スデ新日時
$4 \mathrm{~cm}-1$
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$
$2018 / 01 / 11 \quad 10: 34$

$1:$	3478.95,	11.40
$5:$	2975.62,	31.22
$9:$	1607.38,	12.53
$13:$	1459.85,	38.90
$17:$	1266.04,	14.70
$21:$	1174.44,	27.40
$25:$	1025.94,	20.72
$29:$	871.67,	68.13
$33:$	733.78,	53.54
$37:$	475.37,	43.58

$2:$	3371.92,	9.84
$6:$	2936.09,	36.78
$10:$	1586.16,	19.40
$14:$	1449.24,	41.05
$18:$	1231.33,	19.90
$22:$	1159.97,	36.03
$26:$	964.23,	87.04
$30:$	848.53,	27.14
$34:$	678.82,	62.78
$38:$	445.48,	57.09

$3:$	3267.79,
$7:$	1663.30,
$11:$	1505.17,
$15:$	1418.39,
$19:$	1215.90,
$23:$	1124.30,
$27:$	920.84,
$31:$	805.13,
$35:$	619.04,
$39:$	431.98,

27.59
20.52
35.56
54.32
24.97
55.19
23.82
36.74
90.08
56.44

4
8
12
16
20
24
28
32
36
3054.69
1637.27
1485.88
1390.42
1191.79
1078.01
889.02
758.85
519.72

37． 06
ON
41.71
38.36
30.44
42.42
69.02
39.96
61.20
78.93

積算回数
センブィ
ゲイン
測定日時
測定者
ファイル名
サンプル名
コメント

8
0 N
16
$\begin{array}{ll}16 \\ 2019 / 01 / 26 & 14: 14\end{array}$
分解
アボダイゼーション
スキャンスピード
更新日時
$4 \mathrm{~cm}-1$
Cosine
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$
$2 \mathrm{~mm} / \mathrm{sec}$
$2019 / 01 / 26 \quad 14: 15$
takase
Memory\＃2
memor（S）$-\mathrm{N}-\mathrm{AcO}$－2－（6－methoxy－2－naphthyl）propionamidine

$1:$	3449.06,	39.29	$2:$	3332.39,	32.57	$3:$	3196.43,	44.47	$4:$	3060.48,	56.69
$5:$	2962.13,	52.31	$6:$	2936.09,	46.22	$7:$	2841.60,	61.19	$8:$	1921.72,	92.47
$9:$	1744.30,	6.59	$10:$	1626.66,	2.69	$11:$	1505.17,	39.61	$12:$	1485.88,	35.63
$13:$	1463.71,	32.22	14.	1438.64,	50.95	$15:$	1418.39,	57.71	$16:$	1392.35,	23.48
$17:$	1371.14,	26.73	$18:$	1344.14,	65.00	$19:$	1266.04,	24.50	$20:$	1226.51,	2.12
$21:$	1173.47,	22.32	$22:$	1118.51,	36.18	$23:$	1026.91,	21.13	$24:$.	1009.55,	23.39
$25:$	956.52,	39.60	$26:$	926.63,	35.48	$27:$	885.17,	16.85	$28:$	855.28,	14.44
$29:$	813.81,	21.00	30	765.60,	62.91	$31:$	735.71,	74.10	$32:$	675.93,	57.24
$33:$	643.14,	60.92	$34:$	606.50,	55.16	$35:$	497.54,	50.48	$36:$	476.33,	27.67
$37:$	459.94,	44.15	$38:$	419.44,	45.77						

$========$ CHANNEL $\mathrm{f} 1 \mathrm{l}=======$ NUC
P1
PL1W PL1W SFO1 SI
SF SF
WDW WDW SSB LB GB
PC PC


```
積算回数
ぜロフィリング
ゲイン
測定定時
ファ測定者
ファイル名
サシンプル名
```

16
0 O
$0 \times$
8
2018／03／02 16：17
takase
Memory\＃2
S－naproxene amidine
分解
アボタイゼーション
スキャンスピード更新官時

$4 \mathrm{~cm}-1$

Gosine
$2 \mathrm{~mm} / \mathrm{sec}$
2018／03／02 16：18

$1:$	3320.82,	61.77	$2:$	3162.69,	58.97	$3:$	2965.98,	60.08	$4:$	1683.55,
$5:$	1635.34,	43.79	$6:$	1606.41,	24.50	$7:$	1505.17,	58.68	83.69	
$9:$	1455.03,	57.26	$10:$	1435.74,	64.91	$11:$	1392.35,	58.17	$12:$	1484.92,
$13:$	1215.90,	40.32	$14:$	1162.87,	42.54	$15:$	1030.77,	53.83	$16:$	926.63,
$17:$	890.95,	68.67	$18:$	853.35,	50.61	$19:$	813.81,	58.81	71.15	
$21:$	478.26,	67.08	$22:$	425.23,	86.87	$23:$	415.58,	87.36	$20:$	750.17,

Current Data Parameters NAME A17mc219tf EXPNO PROCNO 18052504

F2－Acquisition Parameter
Date＿ 20180525

Time	15.53

INSTRUM
PROBHD
5 mm PABBO $\mathrm{BB}-$

PULPROG	2 g 30
TD	65536
SOLVENT	CDC13

NS

$$
\begin{aligned}
& 6188.119 \mathrm{~Hz} \\
& 0.094423 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{array}{r}
0.88 .119 \mathrm{~Hz} \\
0.094423 \mathrm{~Hz} \\
5.2953587 \mathrm{sec}
\end{array}
$$

$$
5.2953587 \mathrm{sec}
$$

8203

$$
\begin{aligned}
& \dot{\sim} \sim \dot{\sim} \sim \dot{\sim} \sim \dot{N} \sim \\
& \stackrel{\sim}{\sim} \sim N \sim N \sim N \sim N
\end{aligned}
$$

80.800 usec 6.50 usec
296.5 K 1.00000000 se

CHANNEL f \qquad
15.00 usec

8.19348145 W

 300.1318534 MHz－Processing parameters
SI 32768

SE		300.1300060 MHz
WDW		EM
SSB	0	0.30 Hz
LB	0	
GB	0	

1.00

9	8	7	6	5	4	3	2	1	ppm

ppm

積算巤数
ゲイン
測是目時
測定者
ファイル
サンプル
$コ メ ン ト$

4
16
2018／05／30 15：34
takase
Memory\＃2
dehydroabietyl amide

分解
 アポダイゼーション更新曰時

$4 \mathrm{~cm}-1$
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$
2018／05／30 15：36

$1:$	3427.85,	32.57
$5:$	1628.59,	6.87
$9:$	1382.71,	29.90
$13:$	905.42,	50.49
$17:$	479.22,	45.96
$21:$	404.01,	55.86

$2:$	3327.57,	37.42
$6:$	1574.59,	23.09
$10:$	1362.46,	31.52
$14:$	883.24,	49.87
$18:$	465.72,	43.75

$3:$	2927.41,	18.90
$7:$	1498.42,	40.22
$11:$	1084.76,	34.84
$15:$	822.49,	33.23
$19:$	431.98,	46.85

$4:$	2866.67,	33.75
$8:$	1455.99,	33.12
$12:$	1035.59,	38.23
$16:$	629.64,	35.83
$20:$	418.48,	58.79

13C with dec. CPQNP

4
ON
16
2018／05／30 15：52
takase
Memory\＃2
dehydroabietyl cyanide
分解
等タイさゼージヨン
スキャンズード
更新日時
$4 \mathrm{cm-1}$
4 cosin－
Cosine
dehydroabietyl cyanide

$1:$	3852.11,	76.68	$2:$	3010.34,	34.85
$5:$	2225.45,	39.91	$6:$	1740.44,	57.05
$9:$	1457.92,	25.15	$10:$	1419.35,	41.52
$13:$	1310.39,	53.31	$14:$	1232.29,	54.80
$17:$	1138.76,	69.87	$18:$	1080.91,	60.19
$21:$	907.34,	49.97	$22:$	889.02,	38.90
$25:$	751.14,	54.49	$26:$	705.82,	55.16
$29:$	542.86,	63.87	$30:$	502.37,	65.65
$33:$	432.94,	49.12	$34:$	418.48,	61.19

$3:$	2930.31,	8.90
$7:$	1612.20,	56.90
$11:$	1382.71,	28.58
$15:$	1199.51,	61.21
$19:$	1037.52,	64.63
$23:$	859.13,	53.28
$27:$	633.50,	51.46
$31:$	490.79,	69.82
$35:$	409.80,	66.92

$4:$	2862.81,	16.85
$8:$	1496.49,	33.05
$12:$	1362.46,	40.65
$16:$	1172.51,	58.29
$20:$	1010.52,	63.93
$24:$	818.63,	22.68
$28:$	610.36,	43.25
$32:$	463.80,	69.45
$36:$	402.09,	68.15

NAM

$=======$ CHANNEL $\mathrm{f} 2=======$ $\begin{array}{lc}\text { CPDPRG2 } & \text { waltz16 } \\ \text { NUC2 } & 1 \mathrm{H} \\ \text { PCPD2 } & 9.00 \mathrm{use} \\ \text { PLW2 } & 5.19999981 \mathrm{~W} \\ \text { PLW12 } & 0.14444000 \mathrm{~W} \\ \text { PLW13 } & 0.1700000 \mathrm{~W}\end{array}$ $\begin{array}{ll}\text { PLW12 } & 0.14444000 \mathrm{~W} \\ \text { PLW13 } & 0.11700000 \mathrm{~W}\end{array}$

$$
\begin{array}{ll}
\mathrm{SFO} 2 & 400.1316005 \mathrm{MHz} \\
\mathrm{~F} 2 & - \text { Processing parameters }
\end{array}
$$

$$
\begin{array}{lcc}
\text { SI } & 100.6127690 \mathrm{MHz} \\
\text { SF } & & \text { EM } \\
\text { WDW } & 0 & 2.00 \mathrm{~Hz} \\
\text { SB } & 0 & \\
\text { GB } & 0 &
\end{array}
$$

$$
\begin{array}{lll}
\text { GB BC } & 0 & 1.40 \\
& & \mathrm{NH}
\end{array}
$$

$\stackrel{4}{0}$
2018／06／08 13：40
takase
takase
$\mathrm{N}-\mathrm{OH}$－dehydroabietyl amidine

分筧夺

4 cmi
cosine
$2 \mathrm{~mm} / \mathrm{se}$
2018／06／08 13：40

$1:$	3500.17,
$5:$	1650.77,
$9:$	1381.75,
$13:$	1172.51,
$17:$	978.70,
$21:$	756.92,
$25:$	559.26,
$29:$	443.55,

34.77 34.08 18.04 27.36 70.62 75.6 55.72 73.60 64.

 .08.36
.62
.61
.72
.60
76 NotinNo

$2:$	3398.92,	22.89
$6:$	1574.59,	24.96
$10:$	1362.46,	35.04
$14:$	1139.72,	69.07
$18:$	922.77,	25.69
$22:$	720.28,	55.16
$26:$	504.29,	71.75

$3:$	3255.25,	23.82
$7:$	1497.45,	37.42
$11:$	1230.36,	66.88
$15:$	1074.16,	54.54
$19:$	884.20,	58.13
$23:$	656.64,	65.21
$27:$	476.33,	60.22

$4:$	2930.31,
$8:$	1456.96,
$12:$	1195.65,
$16:$	1036.55,
$20:$	821.53,
$24:$	627.72,
$28:$	454.15,

4.13
30.18
70.98
63.03
35.89
60.30

Current Data Parameters
$\begin{array}{lr}\text { NAME } & \text { A17mc219t } \\ \text { EXPNO } & 18061201\end{array}$
F2 - Acquisition Parameters
Dat
20180612
Time
INSTRUM PROBHD
5 mm PABBO spec

TD	2g30
SOLVENT	65536
NS	CDCl3
DS	8
SWH	2
NIDRES	6188.119

0.094423 Hz 5.2953587 sec
\qquad
80.800 usec 6.50 usec 1.00000000
1 15.00 usec 20 dB 8.19348145 K SFO1 $\quad 300.1318534 \mathrm{MHz}$
F2 - Processing parameters

Current Data Parameters NAME A17mc219tf EXPNO

Date	20190110
Time	12.36
INSTRUM	spect
PROBHD	$5 \mathrm{~mm} \mathrm{CPQNP} \mathrm{1H/}$
PULPROG	zgpg 30
TD	65536
SOLVENT	CDC13
NS	256
DS	2
SWH	29761.904 Hz
FIDRES	0.454131 Hz
AQ	1.1010548 sec
RG	126.99
DW	16.800
DE	18.00 us
TE	300.0
D1	2.00000000 sec
D11	0.03000000 sec
TD0	1

$=======$	CHANNEL $£ 2======$
CPDPRG2	waltz16
NUC2	1 H
PCPD2	90.00 usec
PLW2	5.1999981 W
PLW12	0.14444000 W
PLW13	0.11700000 W

積算回数
ゼロフィ
ゲイン
測定日時
測定者
ファイル名
サンプル名
メント

$\stackrel{4}{\mathrm{ON}}$
2018／06／12 17：45 takase
Memory\＃2
$\mathrm{N}-\mathrm{AcO}$－dehydroabietyl amidine

サンブル名 コメント

分解	$4 \mathrm{~cm}-1$
アポダイゼーション	Cosine
スキヤンスピード	$2 \mathrm{~mm} / \mathrm{sec}$
更新日時	$2018 / 06 / 12 \quad 17: 46$

Cosine
2018／06／12 17：46

積算回数 ざロフィリング ゲイン 測定日時 測定者 ファイル名 サンプル名

$\begin{array}{rrr}1: & 3344.93, & 48.89 \\ 5: & 1577.49, & 47.56 \\ 9: & 1363.43, & 60.76 \\ 13: & 821.53, & 57.97 \\ 17: & 471.51, & 77.95 \\ 21: & 409.80, & 88.12\end{array}$

16
$0 N$ 01
16
2018／07／25 15：11 takase
Memory＂
101，Behydroabietyl amidine

分解
 アポダイゼーション スキャンスビード
 更新日時

4 cm－1
Cosine
$2 \mathrm{mma} / \mathrm{sec}$
2018／07／25 15：11
$\begin{array}{ll}2868.59, & 44.06 \\ 1458.89, & 53.39 \\ 1170.58, & 65.31 \\ 632.54 & 74.70\end{array}$
74.70
84.02

4
8
12
16 $8: 1381.75$,
2.
883.24,
484.05
． 484.05 419． 44 ，
$41944 \quad 78.0$

積算回数
セロフィリング
ゲイン
測定日時
測定者
ファイル名
サンプル名
コメント

8
ON
16
2019／01／26 12：52
takase
Memory\＃2
113，6．6＇－dibromo－1，1＇－bi－2－naphthol

$1:$	3450.99,	27.31
$5:$	1502.28,	32.70
$9:$	1349.93,	40.96
$13:$	1161.90,	17.26
$17:$	989.30,	67.94
$21:$	810.92,	30.26
$25:$	540.93,	56.33
$29:$	473.44,	67.14
$33:$	409.80	68.30


```
稂算回数
ゲイン
ゲイン
測定者
ファ測定者缺名
ファイル名
サシプル
```

$1:$	3504.02,
$5:$	2870.52,
$9:$	1395.25,
$13:$	1254.47,
$17:$	1115.62,
$21:$	858.17,
$25:$	663.39,
$29:$	420.41,

8
0 N
16
16
2019／01／26 13：29
takase
Memory\＃2
120，6， 6^{\prime}－dimethyl－2，2＇－bi sphenol

積算回数 セング ゲインイ測定者 ファイル名 サンプル名

8 0 N 16
 2019／01／26 12：38
 takase
 Memory\＃2

111，1－［hydroxy（phenyI）methyl］－2－naphtho

```
分解
```

```
\[
\begin{aligned}
& \text { アポダイゼージョン } \\
& \text { スキッンズード }
\end{aligned}
\]
更新日時
```

$4 \mathrm{~cm}-1$
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$
2019／01／26 12：38

$1:$	3363.25,	50.92
$5:$	1520.60,	65.37
$9:$	1325.82,	50.82
$13:$	1065.48,	53.84
$17:$	830.21,	43.85
$21:$	669.18,	67.39
$25:$	504.29,	63.07
$29:$	409.80,	77.44

54.00

$3:$	1624.73
$7:$	1455.03
$11:$	1225.54
$15:$	939.16
$19:$	742.46
$23:$	567.93
$27:$	444.51

50.01
52.40
26.19
48.01
47.87
63.95
75.43

$4:$	1601.59,	52.19
$8:$	1410.67,	47.68
$12:$	1154.19,	58.40
$16:$	864.92,	70.71
$20:$	697.14,	42.51
$24:$	530.33,	71.78
$28:$	419.44,	71.79

15

解析結果

$$
\begin{array}{rrr}
\text { No. } & \text { Rt }(\mathrm{min}) & \text { ピーク名 } \\
1 & 10.34 \\
2 & 16.37
\end{array}
$$

面積 面積（\％）
1066726．100 49.6836
1080312．500 50.3164
$2147038.600 \quad 100.0000$

高さ	NTP	対称性	分離度
59930	7825.4	1.274	10.166
40211	8317.4	1.189	--
100141			

解析結果

解析結果

| No． | Rt（min） | ピーク名 | 面積 | 面積（\％） | 高さ | NTP | 対称性 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 分離度

解析結果
$\begin{array}{rrr}\text { No．} & \text { Rt（min）} \\ 1 & 13.84 \\ 2 & 30.74\end{array}$

面積	面積（\％）	高さ
7175027.600	74.6401	234585
2437800.100	25.3599	40839
9612827.700	100.0000	275424

NTP	文称性	分離度
4458．9	1.731	13.879
5859.8	1.231	-

359.8 1．231 $9612827.700 \quad 100.0000 \quad 275424$

解析結果

No．	Rt（min）	ピーク名		面積	面積（\％）	高さ	NTP
1	30.45		30234001.634	47.3348	531894	6491.1	対称性

解析結果

| No．$R t(m i n)$ | ピーク名 | 面積 | 面積 $(\%)$ | 高さ | NTP | 対称性 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | 分離度

解析結果
$\begin{array}{rrrrrrr}\text { No．Rt（min）} & \text { ピーク名 } & \text { 面積 } & \text { 面積（\％）} & \text { 高さ } & \text { NTP } & \text { 対称性 }\end{array}$ 分離度

解析結果
No．
1
$\operatorname{Rt}(\mathrm{~min})$
30.82
ピーク名

面積 面積（\％）
$10442350.600 \quad 100.000$ $10442350.600 \quad 100.000$
$\begin{array}{rrr}\text { 高さ } & \text { NTP } & \text { 対称性 } \\ 175721 & 5574.5 & 2.029\end{array}$ 175721

分離度
－－
\qquad

解析結果

| No． | Rt（min） | ピーク名 | 面積 | 面積（\％） | 高さ | NTP | 対称性 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 分離度

解析結果

No．Rt（min）	ピーク名	面積	面積（\％）	高さ	NTP	対称性	分離度
1	18.82		6497751.898	48.8439	217322	8752.9	1.608
2	28.45		6805350.731	51.1561	143365	7890.3	1.819
		13303102.629	100.0000	360687			

解析結果

No．Rt（min）	
1	17.63
2	32.13

面積	面積（\％）	高さ
300989.840	10.2862	10625
2625161.932	89.7138	49523
2926151.771	100.0000	60148

$\begin{array}{rrr}\text { NTP } & \text { 対称性 } & \text { 分離度 } \\ 8127.8 & 1.399 & 13.009 \\ 7881.2 & 1.720 & -\end{array}$

