# Direct enantioseparation of axially chiral 1,1'-biaryl-2,2'-diols using amidine-based resolving agents

Koichi Kodama,\*<sup>a</sup> Fusato Takase<sup>a</sup> and Takuji Hirose<sup>a</sup>

<sup>a</sup> Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University

## **Table of Contents**

| Figures S1-S4, Table S1                                                 | \$2-\$6 |
|-------------------------------------------------------------------------|---------|
| Experimental details                                                    | S7-S14  |
| References                                                              | S15     |
| Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR charts and IR spectra | S16-S53 |
| Copies of HPLC chromatograms                                            | S54-S60 |

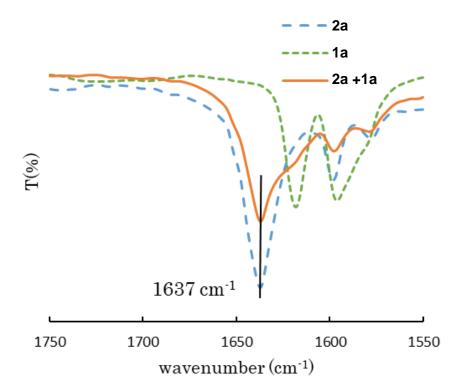



Figure S1. IR spectra of the chiral amidine (2a), phenol (1a) and their equimolar mixture.

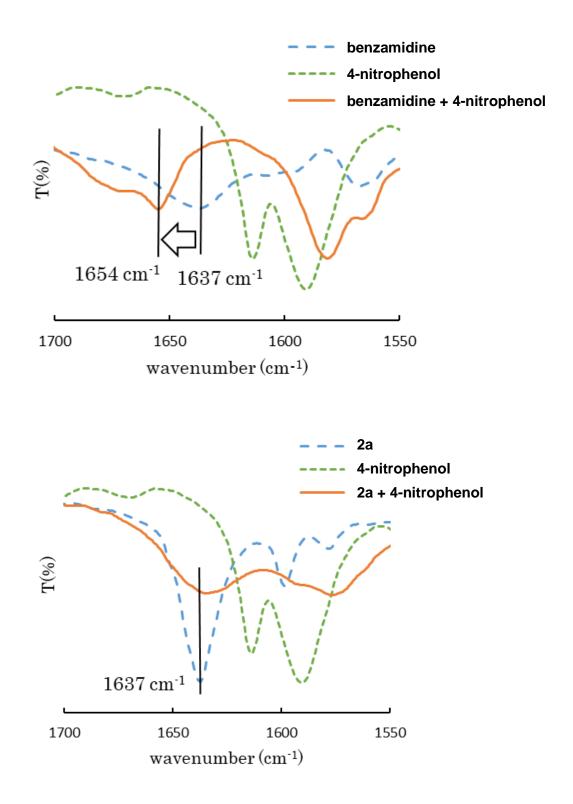



Figure S2. IR spectra of a) benzamidine, 4-nitrophenol and their equimolar mixture and b) chiral amidine (2a), 4-nitrophenol and their equimolar mixture.

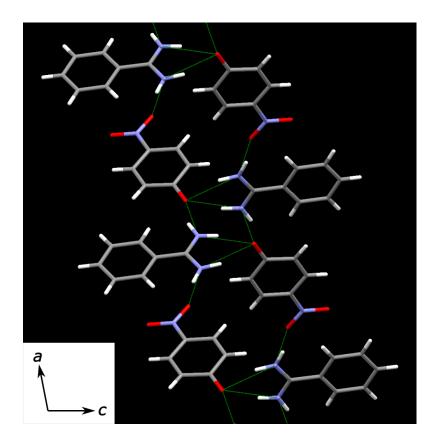



Figure S3. Crystal structure of the salt of benzamidine and 4-nitrophenol viewed from the b axis. Oxygen and nitrogen atoms are represented by red and blue. The dotted lines show hydrogen bonds.

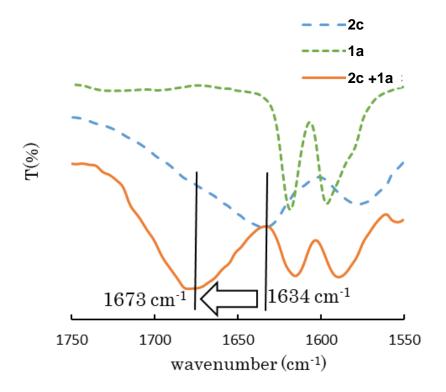



Figure S4. IR spectra of the chiral amidine (2c), 1,1'-binaphthyl-2,2'-diol (1a) and their equimolar mixture.

|                                               |                                      | benzamidine                                                   |                                    |
|-----------------------------------------------|--------------------------------------|---------------------------------------------------------------|------------------------------------|
|                                               | 2a ▪ 2(S)-1a                         | <ul> <li>4-nitrophenol</li> </ul>                             | 2c ▪ ( <i>R</i> )-1a               |
| empirical formula                             | $C_{63}H_{52}N_2O_4$                 | C <sub>13</sub> H <sub>13</sub> N <sub>3</sub> O <sub>3</sub> | $C_{40}H_{44}N_2O_2$               |
| formula weight                                | 901.06                               | 259.26                                                        | 584.77                             |
| temperature (K)                               | 150                                  | 150                                                           | 150                                |
| crystal size (mm)                             | $0.13 \times 0.12 \textbf{ x } 0.04$ | $0.23\times0.07~\textbf{x}~0.03$                              | $0.21\times0.16 \textbf{ x } 0.08$ |
| crystal system                                | orthorhombic                         | monoclinic                                                    | orthorhombic                       |
| space group                                   | $P2_{1}2_{1}2_{1}$                   | P2 <sub>1</sub>                                               | $P2_{1}2_{1}2_{1}$                 |
| a (Å)                                         | 10.0606(15)                          | 9.4244(13)                                                    | 10.6751(15)                        |
| b (Å)                                         | 20.736(3)                            | 5.0509(7)                                                     | 12.6375(17)                        |
| c (Å)                                         | 22.810(3)                            | 13.2982(18)                                                   | 23.647(3)                          |
| α (°)                                         | 90                                   | 90                                                            | 90                                 |
| β (°)                                         | 90                                   | 100.928(2)                                                    | 90                                 |
| γ (°)                                         | 90                                   | 90                                                            | 90                                 |
| V (Å <sup>3</sup> )                           | 4758.6(12)                           | 621.54(15)                                                    | 3190.1(8)                          |
| Ζ                                             | 4                                    | 2                                                             | 4                                  |
| <i>Dc</i> (g/cm <sup>3</sup> )                | 1.258                                | 1.385                                                         | 1.218                              |
| μ ( <b>Mo<sub>Ka</sub>) (mm<sup>-1</sup>)</b> | 0.078                                | 0.101                                                         | 0.074                              |
| $	heta_{\min/\max}$ (°)                       | 1.327/24.997                         | 1.560/24.987                                                  | 1.722/27.478                       |
| $R1 [F_0 > 2\sigma(F_0)]$                     | 0.0419                               | 0.0518                                                        | 0.0416                             |
| $wR2$ (all $F_0^2$ )                          | 0.0754                               | 0.1366                                                        | 0.0901                             |
| GOF                                           | 0.794                                | 1.037                                                         | 0.950                              |
| measured refins                               | 22966                                | 2944                                                          | 18184                              |
| independent reflns                            | 8364                                 | 1955                                                          | 7201                               |
| observed refins                               | 5316                                 | 1891                                                          | 5929                               |
| reflns used                                   | 8364                                 | 1955                                                          | 7201                               |
| parameters                                    | 644                                  | 188                                                           | 421                                |
| CCDC number                                   | 2057487                              | 2057488                                                       | 2057489                            |

Table S1. Summary of crystallographic data reported in this study.

### Experimental details

#### General and Materials

All the <sup>1</sup>H and <sup>13</sup>C NMR spectra were measured using 300, 400, or 500 MHz spectrometers. IR spectra were reported in reciprocal centimeters. Melting points are uncorrected. Optical rotation values were measured with a polarimeter. All commercially available reagents and solvents were purchased and used as received unless noted. Dry THF was freshly distilled from sodium under a nitrogen atmosphere. Dry CH<sub>2</sub>Cl<sub>2</sub> and dry CCl<sub>4</sub> were distilled after drying over CaCl<sub>2</sub> and stored with Molecular Sieves 4A under a nitrogen atmosphere. Dry triethylamine was distilled from sodium under a nitrogen atmosphere and stored with sodium under a nitrogen atmosphere. Dry EtOH was distilled from sodium under a nitrogen atmosphere. The enantiomeric excess of the compounds was determined by chiral HPLC analysis (Daicel Chiralcel OD-3 column 4.6 × 250 mm or Chiralpak AS-3 column 2.1 × 250 mm) with UV detection at 254 nm.

#### Synthesis and characterization

(*S*)-*N*-(1-phenylethyl)benzamide (4).<sup>1</sup> To a vigorously stirred mixture of (*S*)-1-phenylethylamine (3) (2.81 g, 23.2 mmol) and NaOH (1.29 g, 32.2 mmol) in H<sub>2</sub>O (25 mL) was added dropwise benzoylchloride (3.62 g, 25.8 mmol) over 10 min at 0 °C. After the suspension was stirred for 2 h at room temperature, the white precipitate was filtered, washed several times with H<sub>2</sub>O and then dried in vacuo. The desired product **4** (4.24 g, 18.8 mmol, 81%) was obtained as a white solid. Mp: 118.5-120.3 °C.  $[\alpha]_D^{17} = +7.2$  ° (c 0.251, MeOH). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.84-7.70 (m, 2H), 7.58-7.22 (m, 8H), 6.42-6.18 (br, 1H), 5.44-5.26 (m, 1H), 1.62 (d, *J* = 6.9 Hz, 3H). IR (KBr): v (cm<sup>-1</sup>) 3451, 3331, 1634, 1523, 1490, 1319, 758, 700.

(*S*,*S*)-*N*,*N*'-bis(1-phenylethyl)benzamidine (2a).<sup>1</sup> A solution of 4 (0.903 g, 4.01 mmol) and 2,6-lutidine (0.647 g, 6.04 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was cooled to 0 °C. Oxalyl chloride (0.543 g, 4.28 mmol) diluted with dry CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was slowly added to the solution over 30 min. Stirring was continued at 0 °C for 30 min, and the solution was allowed to warm to room temperature and stirred for 30 min. **3** (0.490 g, 4.04 mmol) diluted with dry CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was slowly added to the solution over 30 min at room temperature. The reaction mixture was refluxed for 24 h, and then concentrated under reduced pressure. The residue was dissolved in AcOEt (20 mL) and extracted with 1 N HCl aq. (10 mL × 15). The aqueous phase was basified with 6 N NaOH aq. and extracted with CHCl<sub>3</sub> (5 mL × 5). The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was suspended in hexane, and the resulting solid

was collected by filtration. The crude product (0.530 g) was recrystallized from EtOH (0.8 mL) and the desired product **2a** (0.441 g, 1.34 mmol, 33%) was obtained as colorless crystals. Mp: 124.3-125.0 °C.  $[\alpha]_{D}^{24} = -48.5$  ° (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  (ppm) 7.52-6.72 (m, 15H), 6.70-6.56 (m, 1H), 5.26-5.02 (m, 1H), 4.12-3.96 (m, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 1.17 (d, *J* = 6.3 Hz, 3H). IR (KBr): v (cm<sup>-1</sup>) 3060, 2955, 2877, 1637, 1599, 1494, 1484, 1451, 1361, 1349, 1309, 1268, 1142, 1090, 766, 699.

(*S*)-2-(6-methoxy-2-naphthyl)propionamide (6).<sup>2</sup> Oxalyl chloride (3.0 mL) and DMF (3 drops) were added to (*S*)-2-(6-methoxy-2-naphthyl)propanoic acid (**5**) (2.32 g, 10.1 mmol) under a nitrogen atmosphere at 0 °C, and the resulting solution was refluxed for 2 h. After the excess of oxalyl chloride was distilled off, dry toluene (20 mL) and 28% NH<sub>3</sub> aq. (4 mL) were added at 0 °C. After the resulting suspension was stirred at room temperature for 1 h, the white precipitate formed was filtered, washed several times with H<sub>2</sub>O and then dried in vacuo. The desired product **6** (2.21 g, 9.63 mmol, 96%, >99% ee) was obtained as a white solid, which was used for next step without further purification. Mp: 177.0-179.0 °C.  $[\alpha]_{D}^{22} = +33.3 \circ$  (c 0.195, MeOH). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.80-7.66 (m, 3H), 7.44-7.34 (m, 1H), 7.20-7.08 (m, 2H), 3.92 (s, 3H), 3.74 (q, *J* = 7.2 Hz, 1H), 1.61 (d, *J* = 7.2 Hz, 3H). IR (KBr): v (cm<sup>-1</sup>) 3348, 3195, 2983, 2898, 1660, 1606, 1505, 1486, 1461, 1403, 1309, 1267, 1228, 1217, 1173, 1114, 1027, 927, 894, 854, 814. HPLC analysis (Daicel Chiralcel OD-3, hexane/2-propanol=80:20, 1.0 mL/min, 254 nm UV detector; *t*<sub>r</sub>(*S*) = 10.3 min, *t*<sub>r</sub>(*R*) = 16.4 min).

(*S*)-2-(6-methoxy-2-naphthyl)propionitrile (7).<sup>3</sup> To a stirred solution of **6** (0.300 g, 1.31 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (15 mL) were added PPh<sub>3</sub> (0.420 g, 1.60 mmol), dry triethylamine (0.161 g, 1.59 mmol) and dry CCl<sub>4</sub> (0.246 g, 1.60 mmol) under a nitrogen atmosphere. The solution was refluxed for 20 h. After the reaction was quenched with H<sub>2</sub>O, the organic layer was separated, washed with 1 N HCl aq., dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product (0.875 g) was purified by silica gel column chromatography (eluent: CHCl<sub>3</sub>). The desired product 7 (0.244 g, 1.15 mmol, 88%, >99% ee) was obtained as a pale yellow solid. Mp: 98.7-100.0 °C.  $[\alpha]_{1D}^{1D} = -28.9 \circ$  (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.84-7.68 (m, 3H), 7.46-7.34 (m, 1H), 7.22-7.08 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 1H), 3.93 (s, 3H), 1.72 (d, *J* = 7.2 Hz, 3H). IR (KBr): v (cm<sup>-1</sup>) 3065, 3020, 2992, 2963, 2942, 2905, 2840, 2240, 1916, 1777, 1712, 1632, 1604, 1506, 1483, 1448, 1419, 1393, 1376, 1356, 1260, 1214, 1188, 1165, 1085, 1024, 960, 927, 891, 856. HPLC analysis (Daicel Chiralpak AS-3, hexane/2-propanol=99.5:0.5, 0.3 mL/min, 254 nm UV detector;  $t_r(S) = 34.6 \min, t_r(R) = 41.2 \min$ ).

(S)-N-hydroxy-2-(6-methoxy-2-naphthyl)propionamidine (8). To a stirred solution of 7 (1.14 g, 5.40 mmol) in dry EtOH (3 mL) and dry DMF (3 mL) were added H<sub>2</sub>NOH•HCl (1.13 g, 16.3 mmol) and dry triethylamine (1.65 g, 16.3 mmol), and then the solution was refluxed under a nitrogen

atmosphere for 10 h. After cooling to room temperature, the solution was concentrated under reduced pressure. The residue was dissolved in AcOEt (40 mL) and washed with H<sub>2</sub>O / *sat*. NaCl aq. = 1/1. The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product (0.893 g) was purified by silica gel column chromatography (eluent: CHCl<sub>3</sub>/MeOH = 30/1, v/v). The desired product **8** (0.272 g, 1.11 mmol, 21%, 51% ee) was obtained as a white solid. Mp: 142.0-143.5 °C (21% ee).  $[\alpha]_D^{18} = -10.5 \circ$  (c 0.506, MeOH) (21% ee). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.80-7.64 (m, 3H), 7.46-7.36 (m, 1H), 7.20-7.04 (m, 2H), 4.50-4.26 (br, 2H), 3.92 (s, 3H), 3.76 (q, *J* = 7.2 Hz, 1H), 1.58 (d, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 157.7, 156.6, 136.9, 133.8, 129.2, 128.9, 127.5, 126.2, 125.6, 119.1, 105.7, 55.3, 41.8, 18.0. IR (KBr): v (cm<sup>-1</sup>) 3479, 3372, 3268, 3055, 2976, 2936,1663, 1637, 1607, 1586, 1505, 1486, 1460, 1449, 1418, 1390, 1266, 1231, 1216, 1192, 1174, 1160, 1124, 1078, 1026, 921, 889, 849. HPLC analysis (Daicel Chiralcel OD-3, hexane/2-propanol=80:20, 1.0 mL/min, 254 nm UV detector; *t*<sub>r</sub>(*S*) = 10.5 min, *t*<sub>r</sub>(*R*) = 13.1 min).

(*S*)-*N*-acetoxy-2-(6-methoxy-2-naphthyl)propionamidine (9). To a stirred solution of **8** (0.267 g, 1.10 mmol) in THF (5 mL) were added pyridine (0.111 g, 1.40 mmol) and acetic anhydride (0.135 g, 1.32 mmol) at 0 °C, and then the solution was stirred at room temperature for 1 h. After the solvent was distilled off, the residue was dissolved in CHCl<sub>3</sub> (50 mL), and washed with 1 N HCl aq., *sat*. NaHCO<sub>3</sub> aq. and *sat*. NaCl aq. The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The desired product **9** (0.301 g, 1.05 mmol, 96%, 51% ee) was obtained as a white solid, which was used for next step without further purification. Mp: 105.0-108.0 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.80-7.68 (m, 3H), 7.50-7.38 (m, 1H), 7.22-7.08 (m, 2H), 4.66-4.42 (br, 2H), 4.04-3.84 (m, 4H), 2.19 (s, 3H), 1.67 (d, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 168.8, 160.3, 157.9, 135.4, 133.9, 129.2, 128.9, 127.6, 126.2, 125.5, 119.3, 105.7, 55.4, 41.3, 19.9, 17.7. IR (KBr): v (cm<sup>-1</sup>) 3449, 3332, 3196, 3060, 2962, 2936, 2841, 1744, 1627, 1505, 1486, 1464, 1439, 1418, 1392, 1371, 1266, 1227, 1173, 1119, 1027, 1010, 957, 927, 885, 855, 814. HPLC analysis (Daicel Chiralcel OD-3, hexane/2-propanol=80:20, 1.0 mL/min, 254 nm UV detector; *t<sub>r</sub>*(*S*) = 13.8 min, *t<sub>r</sub>*(*R*) = 30.7 min).

**2-(6-methoxy-2-naphthyl)propionamidine (2b).** A suspension of **9** (0.720 g, 2.51 mmol) and 10% Pd-C (0.173 g) in EtOH (30 mL) was stirred under a hydrogen atmosphere at room temperature for 2 h. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue (0.752 g) was recrystallized from MeOH (8.5 mL) to give the acetate salt of the product as a solid. The separated filtrate was concentrated under reduced pressure and the residue was recrystallized from EtOH / H<sub>2</sub>O (4 mL / 0.5 mL). The combined solid was dissolved in CHCl<sub>3</sub> (30 mL) and 1 N NaOH aq. (20 mL) was added. The aqueous layer was separated and extracted with CHCl<sub>3</sub> (15 mL × 5). The combined organic layer was washed with *sat*. NaCl aq., dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The desired product **2b** (0.597 g, 2.07 mmol, 83%,

racemic) was obtained as a white solid. Mp: 125.0-129.0 °C.  $[\alpha]_D^{26} = 0$  ° (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.80-7.62 (m, 3H), 7.40-7.30 (m, 1H), 7.22-7.04 (m, 2H), 3.92 (s, 3H), 3.73 (q, J = 7.2 Hz, 1H), 1.58 (d, J = 7.2 Hz, 3H). IR (KBr): v (cm<sup>-1</sup>) 3321, 3163, 2966, 1684, 1635, 1606, 1505, 1485, 1455, 1436, 1392, 1264, 1216, 1163, 1030, 927, 891, 853.

**dehydroabietyl amide (11).**<sup>4</sup> To a stirred solution of dehydroabietic acid (**10**) (2.01 g, 6.09 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (3 mL) were added DMF (3 drops) and oxalyl chloride (1.5 mL) under a nitrogen atmosphere at 0 °C, and the solution was refluxed for 2 h. After the volatile components were distilled off, dry toluene (10 mL) and 28% NH<sub>3</sub> aq. (3 mL) were added at 0 °C. The resulting suspension was stirred at room temperature for 2 h, and then was added to AcOEt (100 mL) and H<sub>2</sub>O (50 mL). The organic layer was separated and washed with *sat*. NaHCO<sub>3</sub> aq. and *sat*. NaCl aq. The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The desired product **11** (1.95 g, 6.50 mmol, 97%) was obtained as a pale yellow solid, which was used for next step without further purification. Mp: 153.0-156.0 °C. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +41.1 ° (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.22-7.12 (m, 1H), 7.04-6.96 (m, 1H), 6.90-6.82 (m, 1H), 5.90-5.60 (br, 1H), 5.50-5.20 (br, 1H), 2.96-2.85 (m, 2H), 2.85-2.73 (m, 1H), 2.39-2.25 (m, 1H), 2.16-2.04 (m, 1H), 1.90-1.40 (m, 7H), 1.29 (s, 3H), 1.26-1.14 (m, 9H). IR (KBr): v (cm<sup>-1</sup>) 3428, 3328, 2927, 2867, 1629, 1575, 1498, 1456, 1383, 1362, 1085, 1036, 905, 883, 822.

**dehydroabietyl cyanide (12).**<sup>5</sup> To a stirred solution of **11** (5.49 g, 18.3 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (100 mL) were added PPh<sub>3</sub> (7.20 g, 27.4 mmol), dry triethylamine (2.78 g, 27.4 mmol) and dry CCl<sub>4</sub> (4.23 g, 27.5 mmol) under a nitrogen atmosphere. The solution was refluxed for 17 h. After the reaction was quenched with H<sub>2</sub>O, the organic layer was separated, washed with 1 N HCl aq., dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product (14.8 g) was purified by silica gel column chromatography (eluent: hexane/CHCl<sub>3</sub> = 1/1, v/v). The desired product **12** (4.77 g, 16.9 mmol, 93%) was obtained as a white solid. Mp: 77.0-80.0 °C.  $[α]_D^{26} = +37.0 °$  (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ (ppm) 7.20-7.10 (m, 1H), 7.06-6.92 (m, 1H), 6.92-6.86 (m, 1H), 3.10-2.92 (m, 2H), 2.92-2.70 (m, 1H), 2.40-2.24 (m, 1H), 2.14-1.66 (m, 8H), 1.42 (s, 3H), 1.22 (d, *J* = 6.9 Hz, 6H), 1.18 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 146.2, 145.4, 134.2, 127.0, 126.6, 124.2, 124.0, 46.8, 37.5, 37.4, 37.3, 37.2, 33.5, 29.8, 25.2, 23.9, 21.7, 18.9, 17.7. IR (KBr): v (cm<sup>-1</sup>) 3010, 2930, 2930, 2863, 2225, 1612, 1496, 1458, 1419, 1383, 889, 819. MS (MALDI-TOF) *m*/z calcd for C<sub>20</sub>H<sub>27</sub>N+Na<sup>+</sup>: 304.204 [M+Na]<sup>+</sup>; found: 304.245.

*N*-hydroxy-dehydroabietyl amidine (13). To a stirred solution of 12 (4.76 g, 16.9 mmol) in dry EtOH (35 mL) were added H<sub>2</sub>NOH•HCl (5.89 g, 84.8 mmol) and dry triethylamine (8.58 g, 84.8 mmol), and then the solution was refluxed under a nitrogen atmosphere for 28 h. After cooling to room temperature, the solution was concentrated under reduced pressure. The residue was dissolved in AcOEt (100 mL) and washed with H<sub>2</sub>O and *sat*. NaCl aq. The organic layer was dried over

anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product (5.76 g) was purified by silica gel column chromatography (eluent: hexane/AcOEt = 2/1, v/v). The desired product **13** (1.66 g, 5.29 mmol, 31%) was obtained as a white solid. Mp: 89.7-91.7 °C.  $[\alpha]_D^{24}$  = +86.2 ° (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.22-7.12 (m, 1H), 7.04-6.94 (m, 1H), 6.94-6.84 (m, 1H), 4.80-4.48 (br, 2H), 2.98-2.74 (m, 3H), 2.45-2.28 (m, 1H), 2.00-1.56 (m, 8H), 1.34-1.18 (m, 12H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 160.0, 147.2, 145.9, 134.8, 127.0, 124.0, 123.9, 46.3, 42.8, 38.3, 37.5, 37.4, 33.5, 30.0, 25.5, 24.0, 20.1, 18.7, 16.0. IR (KBr): v (cm<sup>-1</sup>) 3500, 3399, 3255, 2930, 1651, 1575, 1497, 1457, 1382, 1362, 1230, 1197, 1173, 1140, 1074, 923, 822. MS (MALDI-TOF) *m/z* calcd for C<sub>20</sub>H<sub>30</sub>N<sub>2</sub>O+H<sup>+</sup>: 315.244 [M+H]<sup>+</sup>; found: 315.242.

*N*-acetoxy-dehydroabietyl amidine (14). To a stirred solution of 13 (1.64 g, 5.21 mmol) in THF (44 mL) were added pyridine (0.503 g, 6.36 mmol) and acetic anhydride (0.638 g, 6.25 mmol) at 0 °C, and then the solution was stirred at room temperature for 1 h. After the solvent was distilled off, the residue was dissolved in CHCl<sub>3</sub> (50 mL), and washed with 1 N HCl aq., *sat*. NaHCO<sub>3</sub> aq. and *sat*. NaCl aq. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The desired product 14 (1.69 g, 4.73 mmol, 91%) was obtained as a white solid, which was used for next step without further purification. Mp: 125.8-127.8 °C.  $[\alpha]_{D}^{24}$  = +66.6 ° (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ (ppm) 7.24-7.12 (m, 1H), 7.06-6.98 (m, 1H), 6.92-6.86 (m, 1H), 4.86-4.64 (br, 2H), 2.98-2.74 (m, 3H), 2.44-2.28 (m, 1H), 2.20 (s, 3H), 1.98-1.62 (m, 8H), 1.31 (s, 3H), 1.26 (s, 3H), 1.22 (d, *J* = 6.9 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 169.7, 163.5, 147.0, 145.9, 134.6, 127.0, 124.0, 124.0, 46.4, 43.5, 38.1, 37.9, 37.4, 33.5, 30.0, 25.5, 24.0, 20.4, 20.2, 18.6, 16.0. IR (KBr): v (cm<sup>-1</sup>) 3501, 3378, 2957, 2869, 1743, 1626, 1582, 1497, 1459, 1384, 1364, 1231, 1008, 939, 882, 822. MS (MALDI-TOF) *m/z* calcd for C<sub>22</sub>H<sub>32</sub>N<sub>2</sub>O<sub>2</sub>+Na<sup>+</sup>: 379.236 [M+Na]<sup>+</sup>; found: 379.217.

**dehydroabietyl amidine (2c).** A suspension of **14** (1.68 g, 4.72 mmol) and 10% Pd-C (0.614 g) in EtOH (60 mL) was stirred under a hydrogen atmosphere at room temperature for 1 day. Pd-C was filtered off and the filtrate was concentrated under reduced pressure. The residue was suspended in hexane, and the resulting solid was collected by filtration. The residue (1.44 g) was dissolved in CHCl<sub>3</sub> (30 mL) and *sat*. NaHCO<sub>3</sub> aq. (70 mL) was added. The aqueous layer was extracted with CHCl<sub>3</sub> (15 mL × 3). The combined organic layer was washed with *sat*. NaCl aq., dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The desired product **2c** (1.22 g, 4.09 mmol, 87%) was obtained as a white solid. Mp: 76.7-79.7 °C.  $[\alpha]_D^{25} = +54.7 \circ$  (c 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.24-7.12 (m, 1H), 7.08-6.96 (m, 1H), 6.94-6.84 (m, 1H), 3.00-2.76 (m, 3H), 2.44-2.30 (m, 1H), 1.92-1.38 (m, 8H), 1.27, (s, 3H), 1.25 (s, 3H), 1.22 (d, *J* = 7.2, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 174.8, 147.0, 146.0, 134.5, 127.0, 124.1, 124.0, 46.8, 45.6, 38.2, 38.1, 37.3, 33.5, 29.9, 25.3, 24.0, 20.5, 19.0, 16.8. IR (KBr): v (cm<sup>-1</sup>) 3345, 2958, 2869, 1634, 1577, 1497, 1459, 1382, 1363, 1201, 1171, 822. MS (MALDI-TOF) *m/z* calcd for

(*rac*)-6,6'-dibromo-1,1'-bi-2-naphthol (1b).<sup>6</sup> *Rac*-1,1'-bi-2-naphthol (1a) (1.00 g, 3.49 mmol) was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (40 mL) under a nitrogen atmosphere. After the mixture was cooled to -10 °C, bromine (1.51 g, 9.45 mmol) diluted with CH<sub>2</sub>Cl<sub>2</sub> (4 mL) was added dropwise over 30 min and the solution was stirred for an additional 2.5 h. After the solution was gradually warmed to room temperature and stirred for another 1 h, the reaction was quenched with *sat*. Na<sub>2</sub>SO<sub>3</sub> aq. (25 mL). The aqueous phase was extracted with CHCl<sub>3</sub> (15 mL × 3) and the combined organic phase was washed with *sat*. NaCl aq. dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product (1.59 g) was recrystallized from toluene/heptane (7 mL/5 mL) and the desired product **1b** (1.11 g, 2.51 mmol, 72%) was obtained as colorless needles. Mp: 206.0-207.0 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.06 (d, *J* = 1.8 Hz, 2H), 7.90 (d, *J* = 9.0 Hz, 2H), 7.46-7.32 (m, 4H), 6.97 (d, *J* = 9.0 Hz, 2H), 5.00 (s, 2H). IR (KBr): v (cm<sup>-1</sup>) 3451, 2952, 1612, 1586, 1502, 1466, 1407, 1382, 1350, 1319, 1268, 1216, 1162, 1145, 1125, 1066, 951, 930, 876, 811.

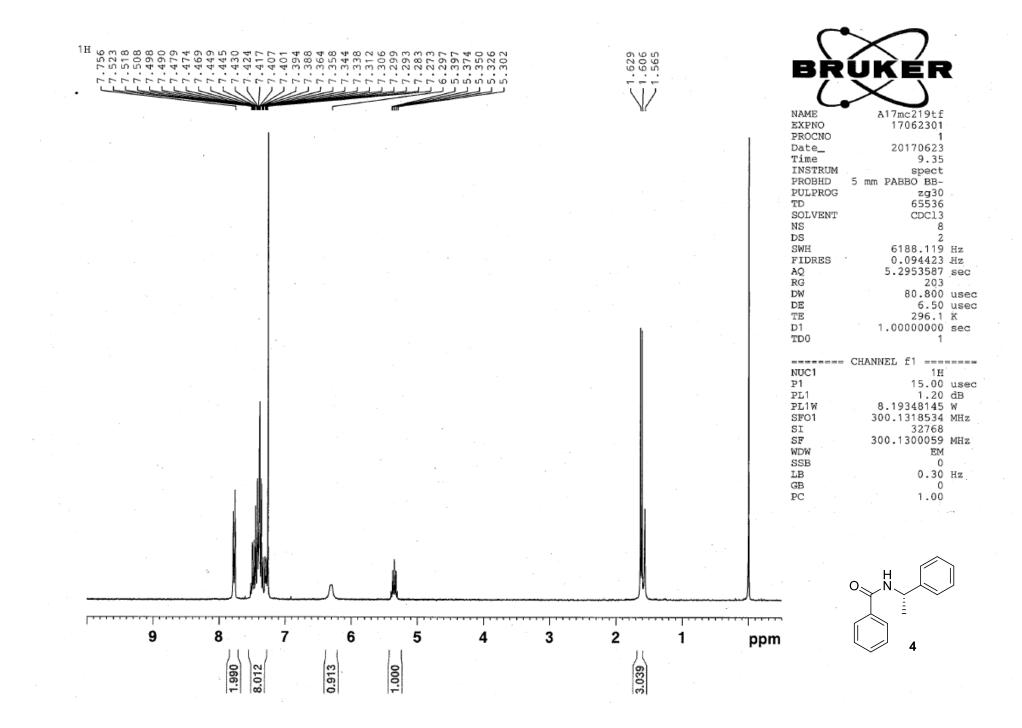
(*rac*)-6,6'-dimethyl-2,2'-bisphenol (1c).<sup>7</sup> To a solution of 4,6-di-*tert*-butyl-4-methylphenol (1.01 g, 4.60 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (9 mL) were added CuCl (45.5 mg, 0.460 mmol) and *N*,*N*,*N*',*N*'-tetramethylethylenediamine (80.1 mg, 0.689 mmol). The suspension was stirred under air at room temperature for 8 h. After addition of H<sub>2</sub>O (20 mL) to the reaction mixture, the whole was extracted with CHCl<sub>3</sub> (10 mL × 3). The organic phase was washed with *sat*. NaCl aq. and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product (1.19 g) was purified by silica gel column chromatography (eluent: hexane/CHCl<sub>3</sub> = 1/1, v/v) to afford *rac*-3,3',5,5'-tetra-*tert*-butyl-6,6'-dimethyl-2,2'-bisphenol (0.594 g, 1.35 mmol, 59%) as a white solid. Mp: 244.0-245.3 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.39 (s, 2H), 4.80 (s, 2H), 2.00 (s, 6H), 1.42 (s, 18H), 1.40 (s, 18H). IR (KBr): v (cm<sup>-1</sup>) 3504, 2991, 2959, 2909, 2871, 1560, 1470, 1414, 1395, 1362, 1332, 1280, 1254, 1233, 1196, 1167, 1116, 1033, 927.

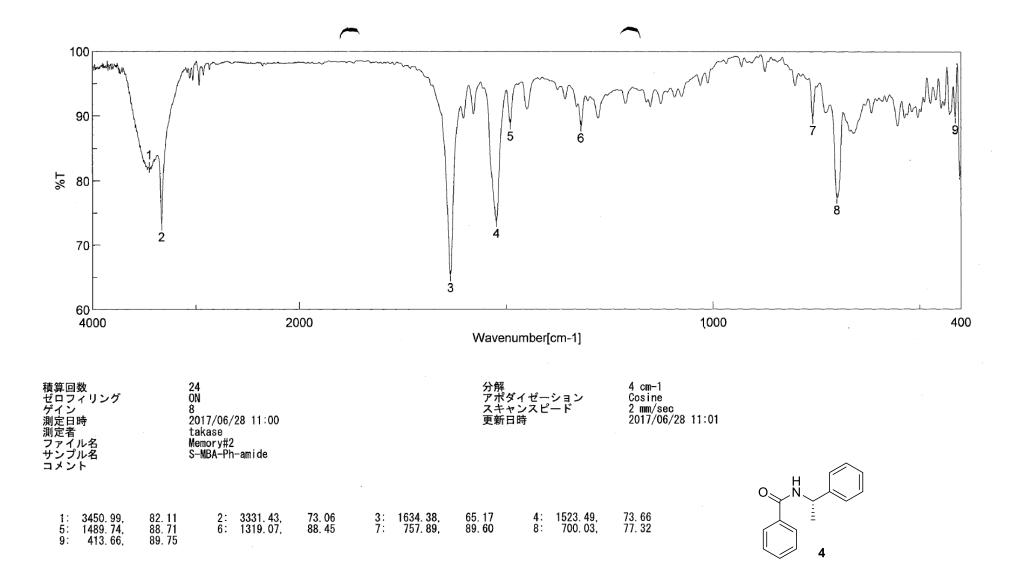
To a solution of (*rac*)-3,3',5,5'-tetra-*tert*-butyl-6,6'-dimethyl-2,2'-bisphenol (0.303 g, 0.691 mmol) in dry toluene (5 mL) was added AlCl<sub>3</sub> (39.2 mg, 0.294 mmol) in small portions at 0 °C under a nitrogen atmosphere. The suspension was stirred at 50 °C for 18 h, and AlCl<sub>3</sub> (99.3 mg, 0.745 mmol) was added to the suspension at 0 °C. The suspension was stirred at 50 °C for 3 h, and AlCl<sub>3</sub> (58.8 mg, 0.441 mmol) was added to the suspension at 0 °C. The suspension was stirred at 50 °C for 3 h, and AlCl<sub>3</sub> (58.4 mg, 0.438 mmol) was added to the suspension at 0 °C. The suspension at 0 °C. After the suspension was stirred at 50 °C for 13 h, the suspension was cooled to 0 °C and carefully quenched by addition of H<sub>2</sub>O (14 mL) and 3 N HCl aq. (56 mL). The organic phase was separated and the aqueous phase was extracted with Et<sub>2</sub>O (10 mL × 3). The combined organic phase was extracted with Et<sub>2</sub>O (10 mL × 3). The organic phase was acidified with 6 N HCl aq. and extracted with Et<sub>2</sub>O (10 mL × 3). The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced

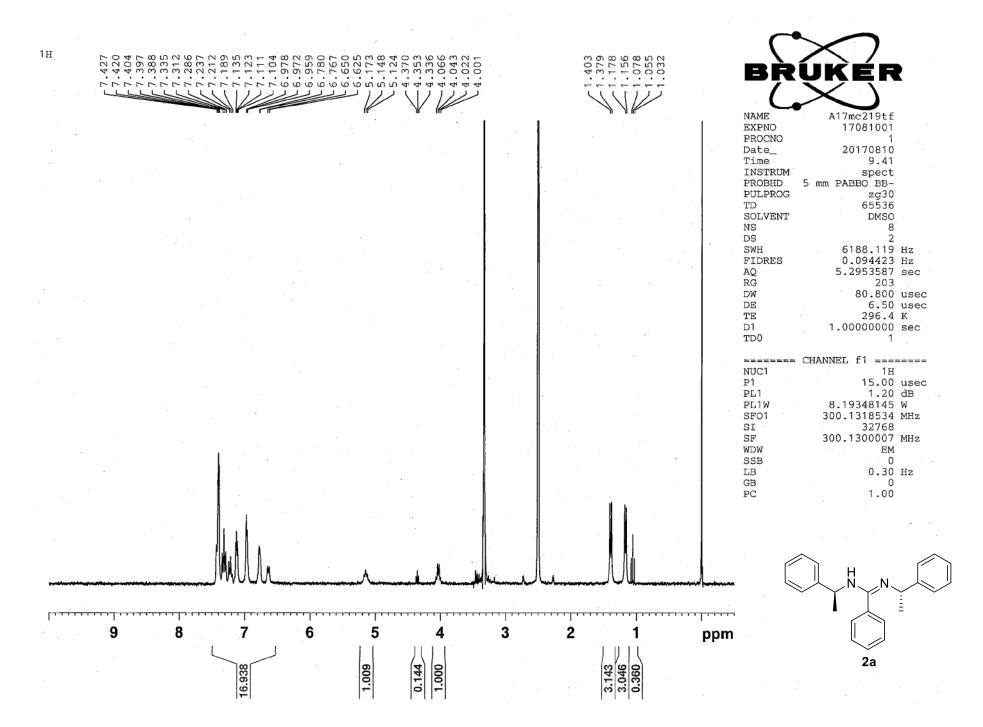
pressure. The desired product **1c** (0.145 g, 0.677 mmol, 98%) was obtained as a white solid. Mp: 159.7-162.7 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ (ppm) 7.32-7.18 (m, 2H), 7.00-6.86 (m, 4H), 4.66 (s, 2H), 2.01 (s, 6H). IR (KBr): v (cm<sup>-1</sup>) 3464, 3413, 3034, 2973, 2915, 1605, 1575, 1465, 1378, 1335, 1281, 1261, 1180, 1090, 1025, 1006, 947, 883.

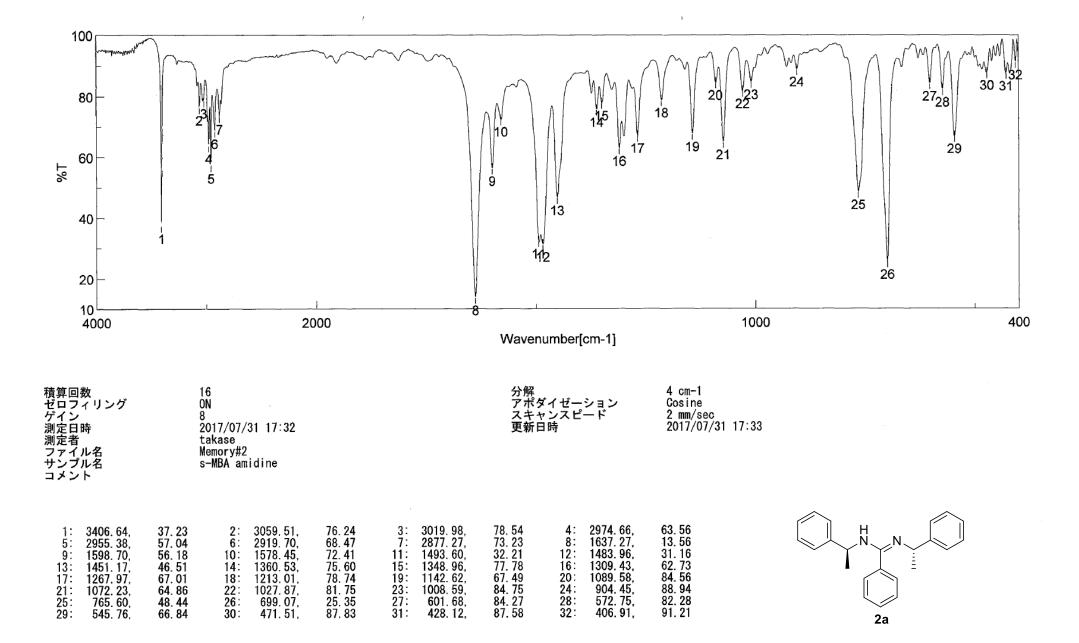
(*rac*)-1-[hydroxy(phenyl)methyl]-2-naphthol (1d).<sup>8</sup> To a stirred suspension of Mg turnings (0.304 g, 12.5 mmol) in dry THF (4 mL) under a nitrogen atmosphere was added dropwise a solution of bromobenzene (1.96 g, 12.5 mmol) in dry THF (9 mL) over 1.5 h at room temperature. After formation of the Grignard reagent has started, the suspension was stirred at room temperature for 30 min, and then refluxed for 1 h. After cooling with an ice bath, 2-hydroxy-1-naphthaldehyde (0.861 g, 5.00 mmol), which was dissolved in dry THF (5.5 mL), was added dropwise to the mixture over 30 min and the suspension was stirred for 2 h at room temperature. The reaction was quenched with *sat*. NH<sub>4</sub>Cl aq. (5 mL) and H<sub>2</sub>O (15 mL) and the whole was extracted with CHCl<sub>3</sub> (10 mL × 3). The organic phase was washed with *sat*. NaCl aq., dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: hexane/AcOEt = 4/1, v/v). The desired product 1d (1.23 g, 4.91 mmol, 98%) was obtained as a white solid. Mp: 118.5-120.3 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.21 (s, 1H), 7.82-7.62 (m, 3H), 7.50-7.12 (m, 8H), 6.82 (d, *J* = 2.6 Hz, 1H), 2.92 (d, *J* = 2.6 Hz, 1H). IR (KBr): v (cm<sup>-1</sup>) 3363, 3029, 1625, 1602, 1521, 1469, 1455, 1411, 1326, 1265, 1226, 1154, 1065, 1011, 939, 830.

#### Enantiomer separation of phenols (1) with chiral amidines (2)

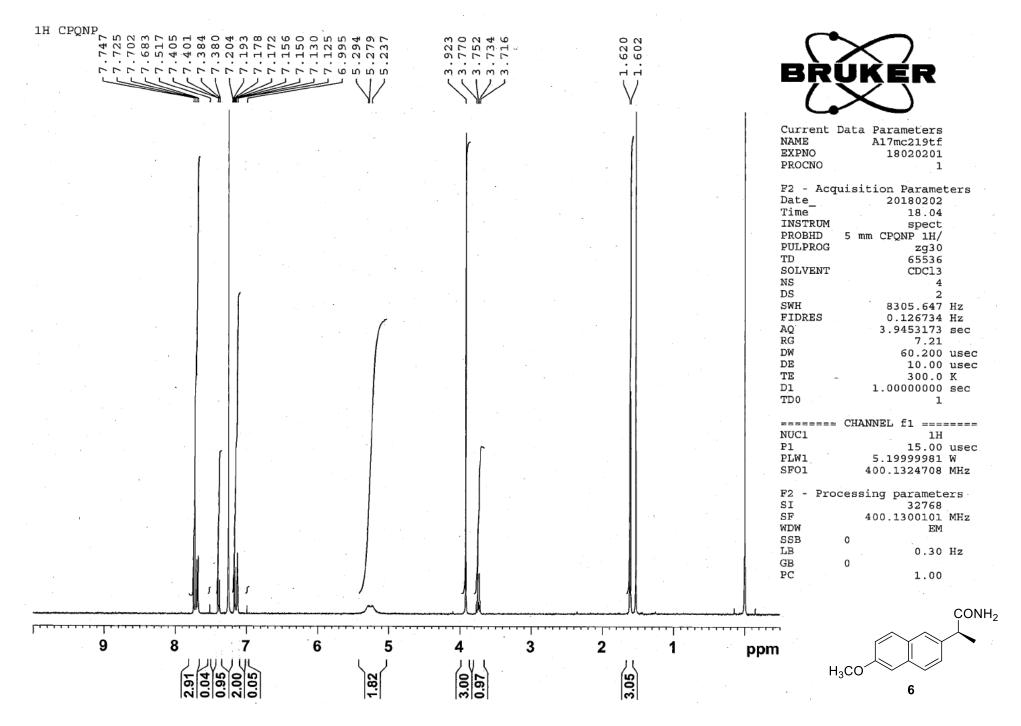

Equimolar amounts of **2** and *rac*-**1** (0.250 mmol) were dissolved in MeOH or CHCl<sub>3</sub>, and the solution was concentrated under reduced pressure to give a salt. An appropriate solvent was added to the salt with heating until a homogeneous solution was formed. The solution was gradually cooled to room temperature and left at the temperature for several days to induce crystallization. The salt **1**·**2** was collected by filtration and dried in vacuo at room temperature. The yield was calculated based on a half amount of *rac*-**1** initially used. A part of the salt was dissolved in ethyl acetate, and the organic phase was washed with 1 N HCl aq. to remove **2**. The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by silica gel preparative TLC to give **2**. The enantiomeric excess of **2** was determined by chiral HPLC analysis. **1a** (Column: Chiralcel OD-3, Eluent: 2-propanol/ hexane = 1/9, Flow rate: 0.5 mL / min, Detection: 254 nm, Retention time:  $t_r(S) = 29.0 \text{ min}$ ,  $t_r(R) = 30.7 \text{ min}$ ). **1b** (Column: Chiralcel OD-3, Eluent: 2-propanol/ hexane = 1/9, Flow rate:  $t_r(1^{st}) = 15.6 \text{ min}$ ,  $t_r(2^{nd}) = 35.0 \text{ min}$ ). **1c** (Column: Chiralcel OD-3, Eluent: 2-propanol/ hexane = 1/9, Flow rate: 1/9, Flow rate: 0.5 mL / min, Detection: 254 nm, Retention time:  $t_r(3^{st}) = 17.6 \text{ min}$ ,  $t_r(R) = 32.1 \text{ min}$ ).

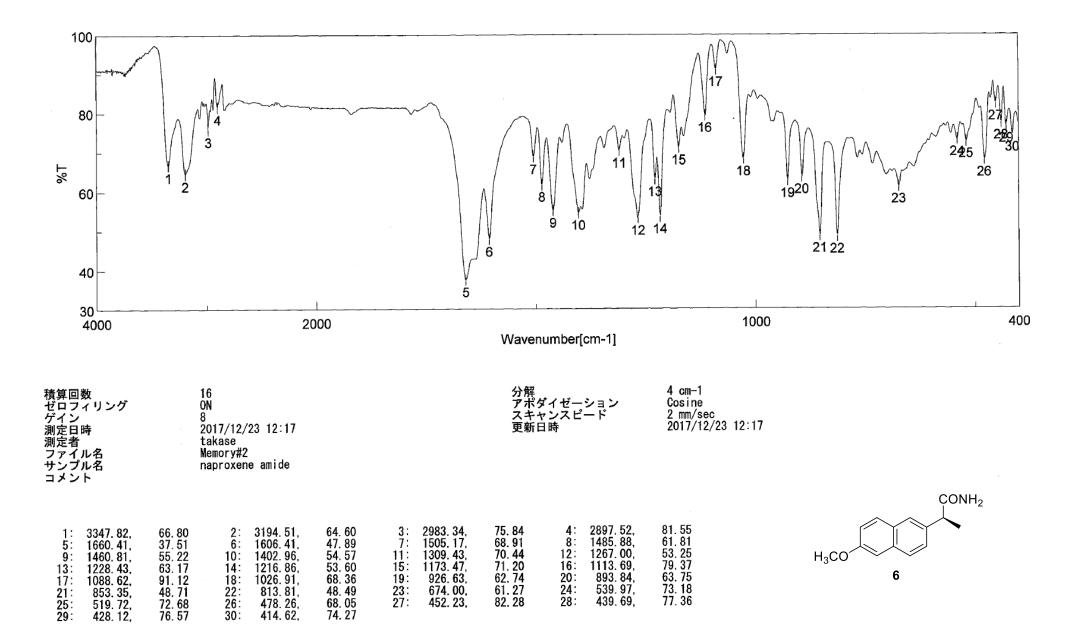

#### X-ray crystallographic analysis

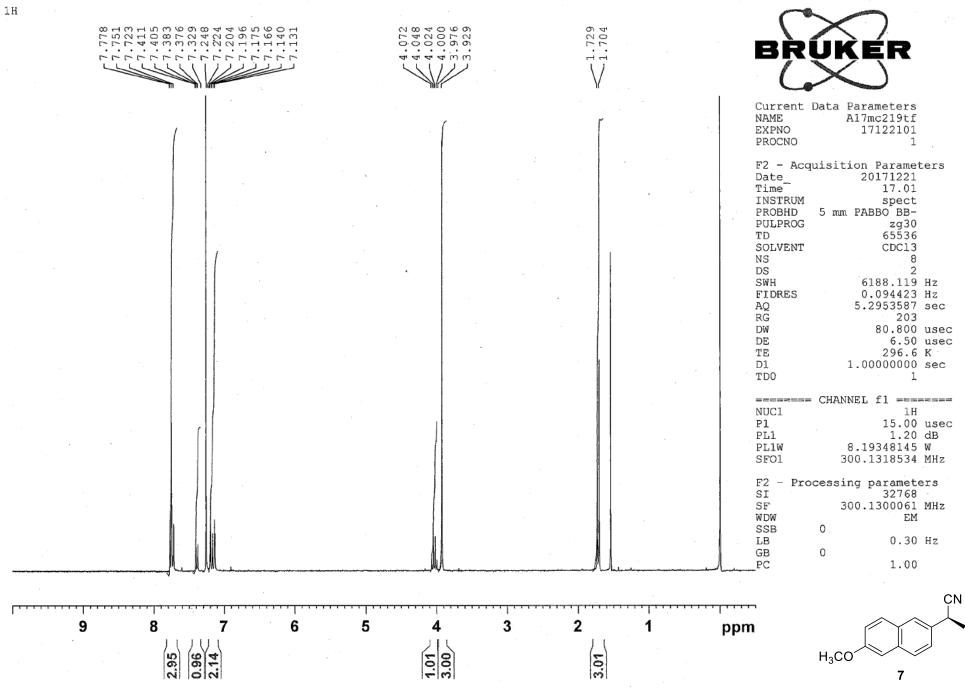

Single crystals suitable for X-ray diffraction analysis were prepared by slow evaporation of the saturated solutions of the salt. X-ray crystallographic data were collected on a Bruker Smart APEX II diffractometer with graphite monochromated Mo K $\alpha$  radiation. Data collections were carried out at 150 K. The structures were solved by a direct method (SIR 2014) and refined by SHELXL-2013 or SHELXL-2018 programs.<sup>9</sup> Crystallographic information files have been deposited with the Cambridge Structural Database.

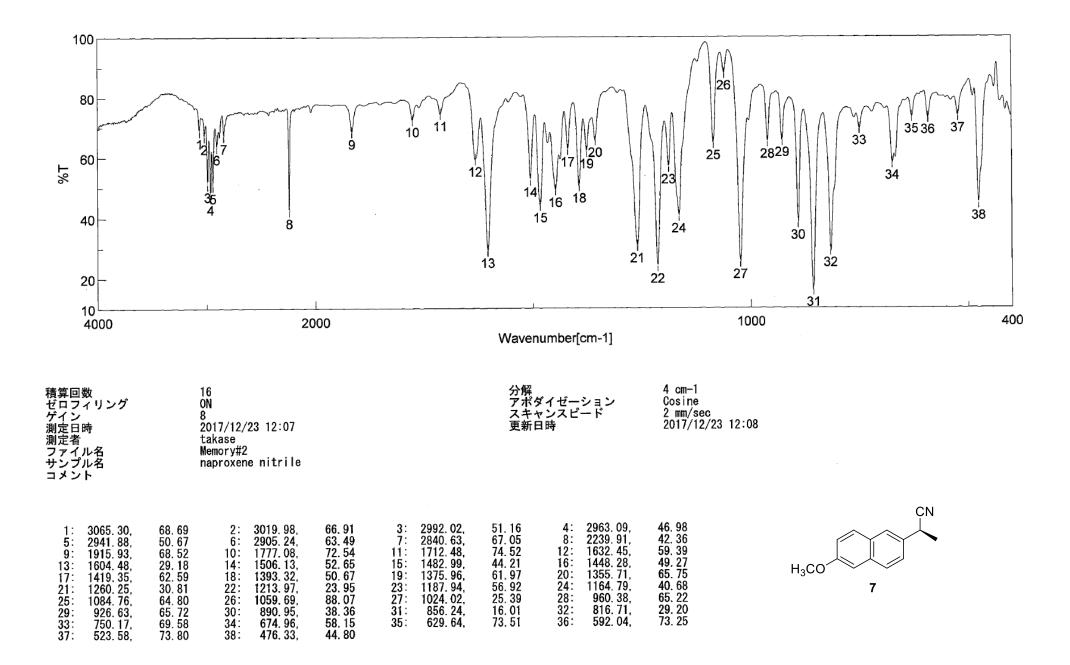

## <u>References</u>

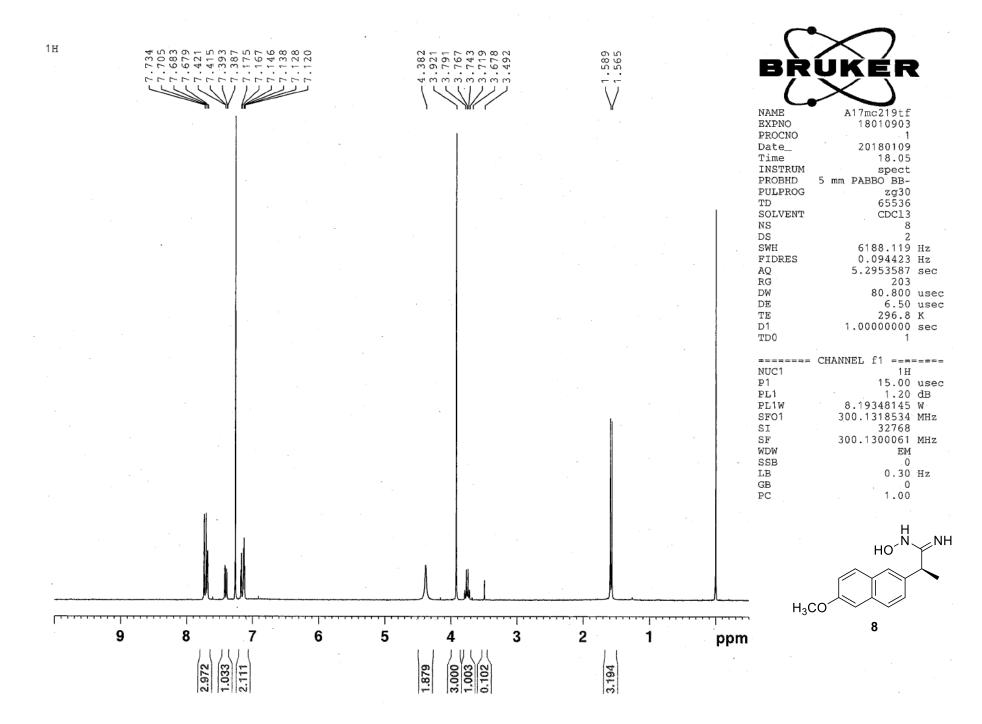
- 1) ref 12b in the manuscript.
- 2) refs 23 in the manuscript.
- 3) refs 24 in the manuscript.
- 4) ref 25 in the manuscript.
- 5) ref 26 in the manuscript.
- 6) ref 27 in the manuscript.
- 7) refs 28 in the manuscript.
- 8) ref 29 in the manuscript.
- 9) ref 30 in the manuscript.



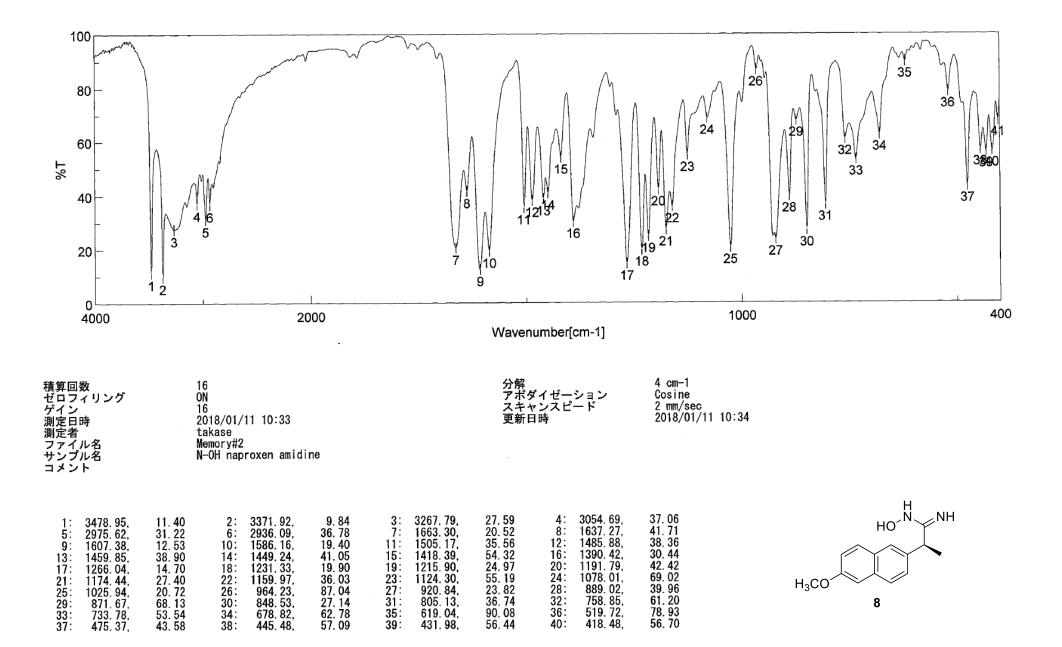



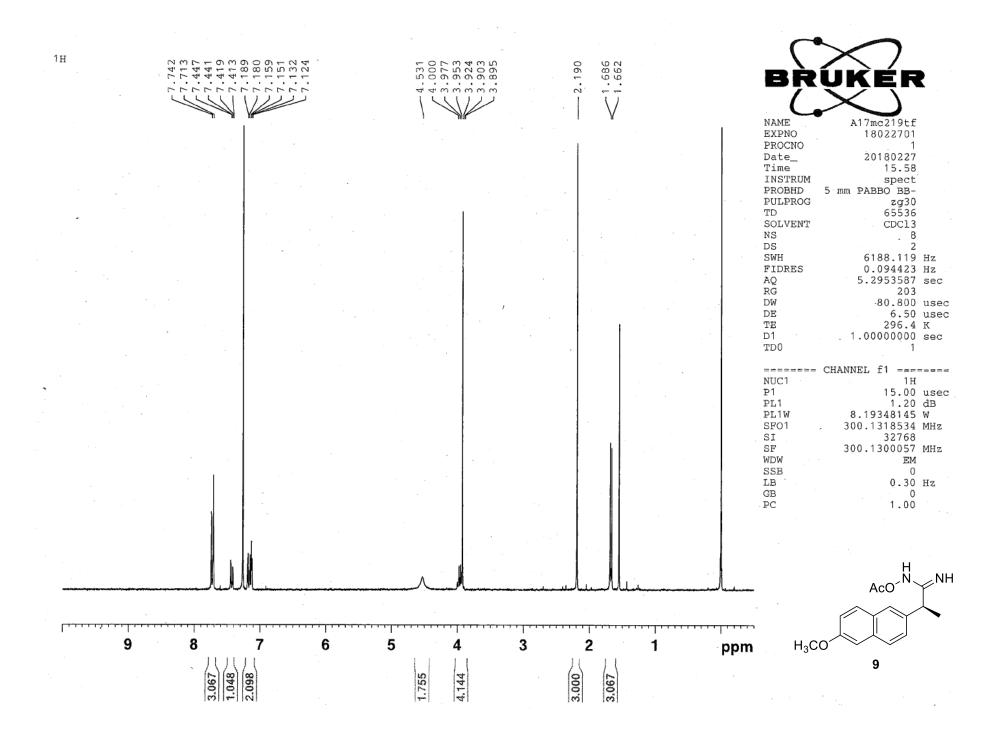



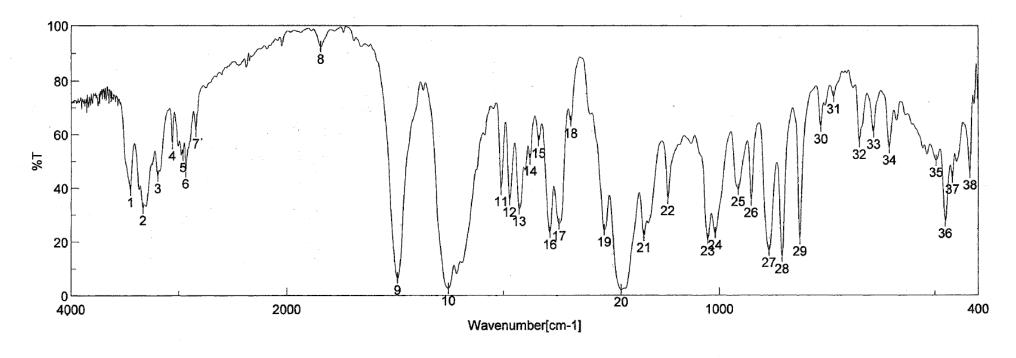







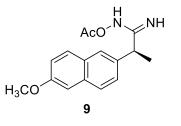

| C with dec. CP | AUČA<br>136.86<br>133.77<br>129.20<br>122.48<br>122.48<br>125.65<br>119.08 | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 41.83       | Current Data Parameters<br>NAME A17mc219tf                                                                                                                                                                                                                                                                                                                               |
|----------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                            |                                                                                             |             | EXPNO 19012401<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20190124<br>Time 12.47<br>INSTRUM spect<br>PROBHD 5 mm CPONP 1H/<br>PULPROG 29P930<br>TD 65536<br>SOLVENT CDC13<br>NS 256                                                                                                                                                                             |
|                |                                                                            |                                                                                             |             | DS         2           SWH         29761.904 Hz           FIDRES         0.454131 Hz           AQ         1.1010548 sec           RG         110.67           DW         16.800 usec           DE         18.00 usec           TE         300.0 K           D1         2.0000000 sec           D11         0.0300000 sec           TD0         1                         |
|                |                                                                            |                                                                                             |             | CHANNEL f1         13C           NUC1         13C           P1         12.00 usec           PLM1         15.5000000 W           SF01         100.6248425 MHz           CEDPRG2         waltz16           NUC2         1H           PCED2         90.00 usec           PLW2         5.1999981 W           PLW12         0.14444000 W           PLW13         0.11700000 W |
|                |                                                                            |                                                                                             |             | SF02         400.1316005 MHz           F2 - Processing parameters         32768           SF         100.6127690 MHz           WDW         EM           SSB         0           LB         2.00 Hz           GB         0           PC         1.40                                                                                                                      |
| 170 160 15     | 0 140 130 120                                                              | 80 70 60 50                                                                                 | 40 30 20 10 | ppm Ho <sup>-N</sup><br>Ho <sup>-N</sup><br>H <sub>3</sub> CO<br>8                                                                                                                                                                                                                                                                                                       |

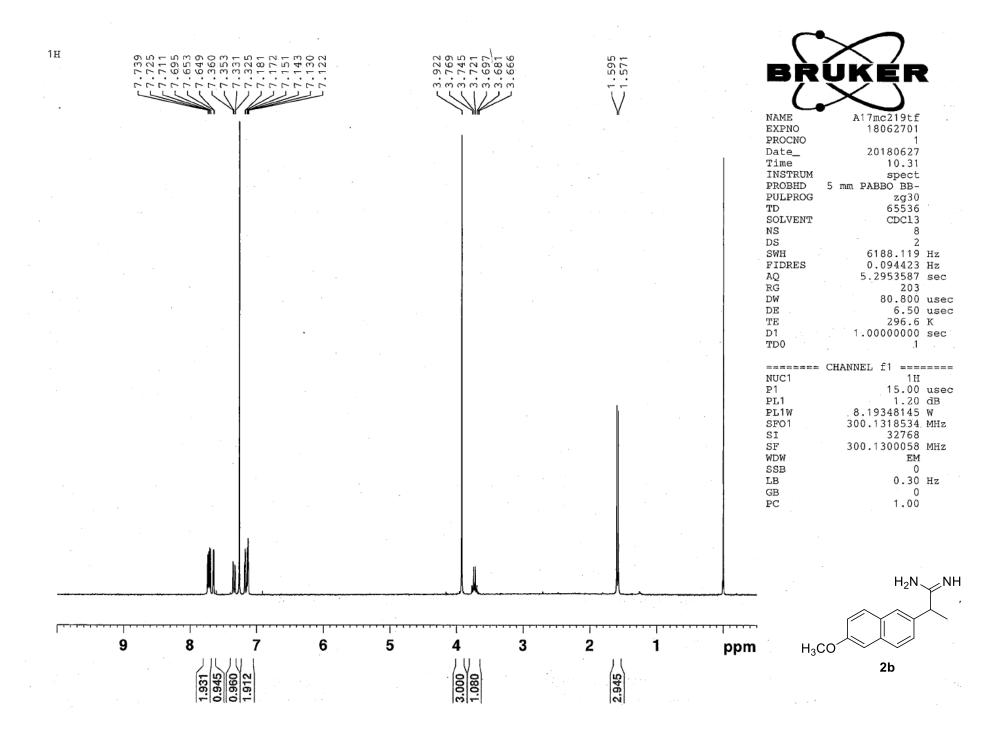


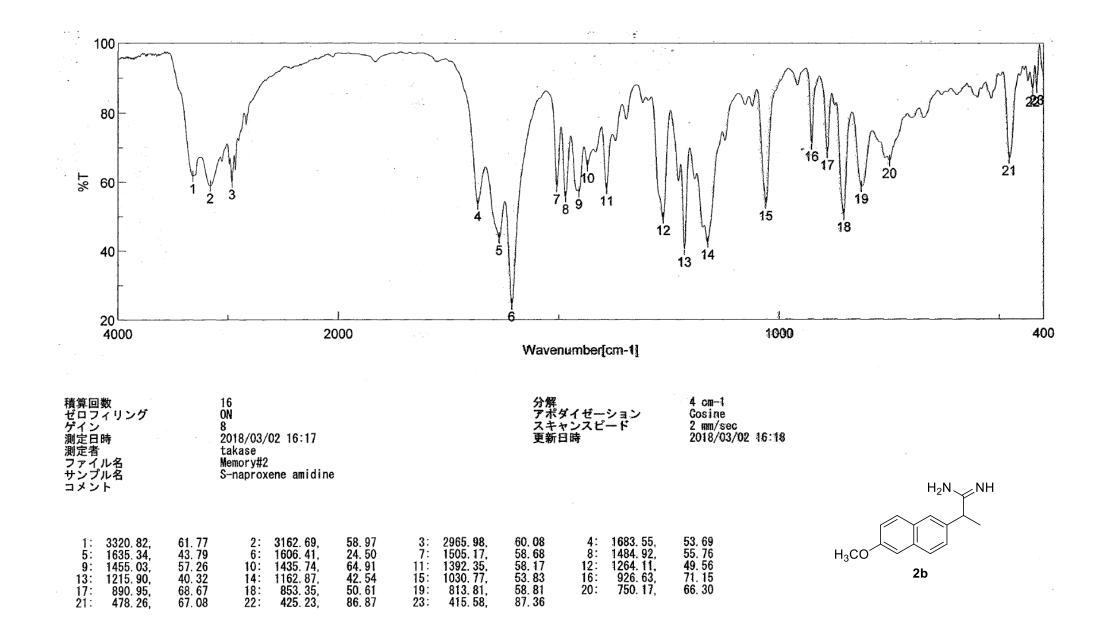


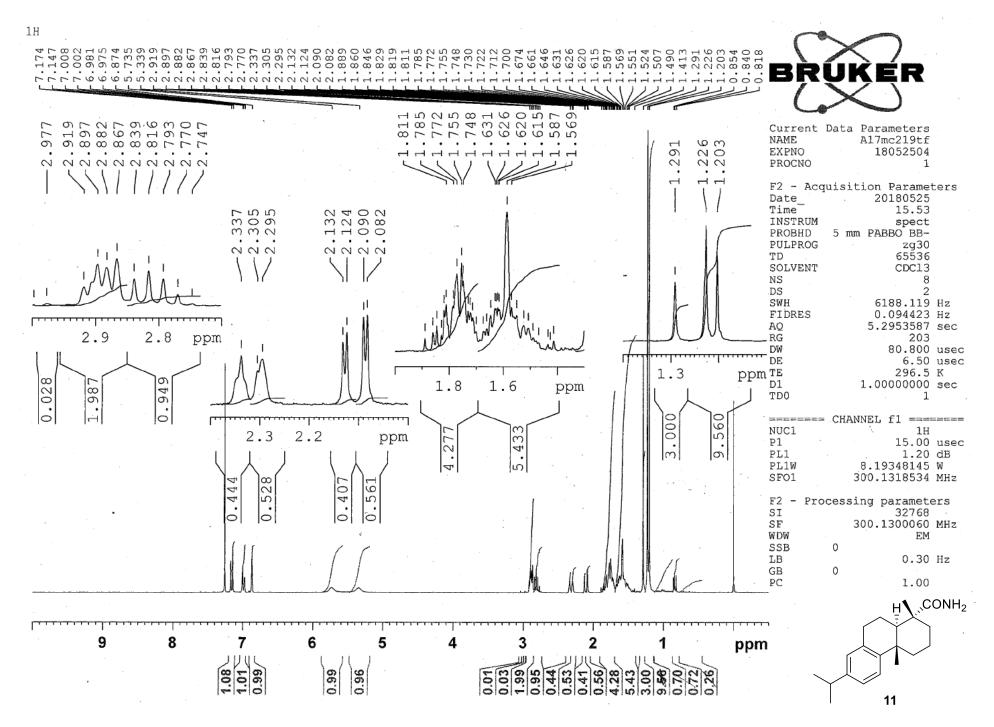
| 13C with dec. CP(<br>82 EE 091<br>84 EE 091<br>1                                                                                                                                                                                  | AUC<br>135.40<br>129.24<br>127.53<br>126.53<br>126.53<br>125.53<br>119.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.70                                 | 35                  |                                                                              | BRUKER                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     | H <sub>3</sub> CO<br>9                                                       | Current Data Parameters<br>NAME A17mc219tf<br>EXPNO 19020101<br>PROCNO 1<br>F2 - Acquisition Parameter<br>Date_ 20190201<br>Time 13.09<br>INSTRUM spect<br>PROBHD 5 mm CPQNP 1H/<br>PULPROG ZgDg30<br>TD 65536<br>SOLVENT CDC13<br>NS 186<br>DS 2                                                   |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |                                                                              | SWH     29761.904 Hz       FIDRES     0.454131 Hz       AQ     1.1010548 se       RG     126.99       DW     16.800 us       DE     18.00 us       TE     300.0 K       D1     2.00000000 se       D11     0.03000000 se       TD0     1                                                            |
|                                                                                                                                                                                                                                   | en<br>Service<br>Service<br>Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                     |                                                                              | ======= CHANNEL f1 ======<br>NUC1 13C<br>P1 12.00 us<br>PLW1 15.50000000 W<br>SF01 100.6248425 MH                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |                                                                              | ======         CHANNEL f2         f2         =====           CPDPRG2         waltz16           NUC2         1H           PCPD2         90.00 us           PLW2         5.19999981 W           PLW12         0.14444000 W           PLW13         0.11700000 W           SF02         400.1316005 MH |
| atter des fins estavel as start anna sin des an sin des anna fins anna fins anna fins anna fins anna fins anna<br>A fins des anna anna an fins anna fins an | Annum and all films and an include a state of the state o | ed fin han and the bar bar bar and the | Alexandra alexandra | A belief the law of the law is the law is the same a second for the same and | F2 - Processing parameters           SI         32768           SF         100.6127682         MH           WDW         EM         SSB         0           SSB         0         2.00         Hz           MDM         2.00         Hz                                                              |
| 180 160                                                                                                                                                                                                                           | 140 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 80                                 | 60                  |                                                                              | יייקון קואייאון שוויש ווא פון אייקון און שוויש פון אייש פון איין פון איין פון איין פון איין פון איין פון איי<br>אר פון איין אין איין אין איין פון איין איין איין                                                                     |

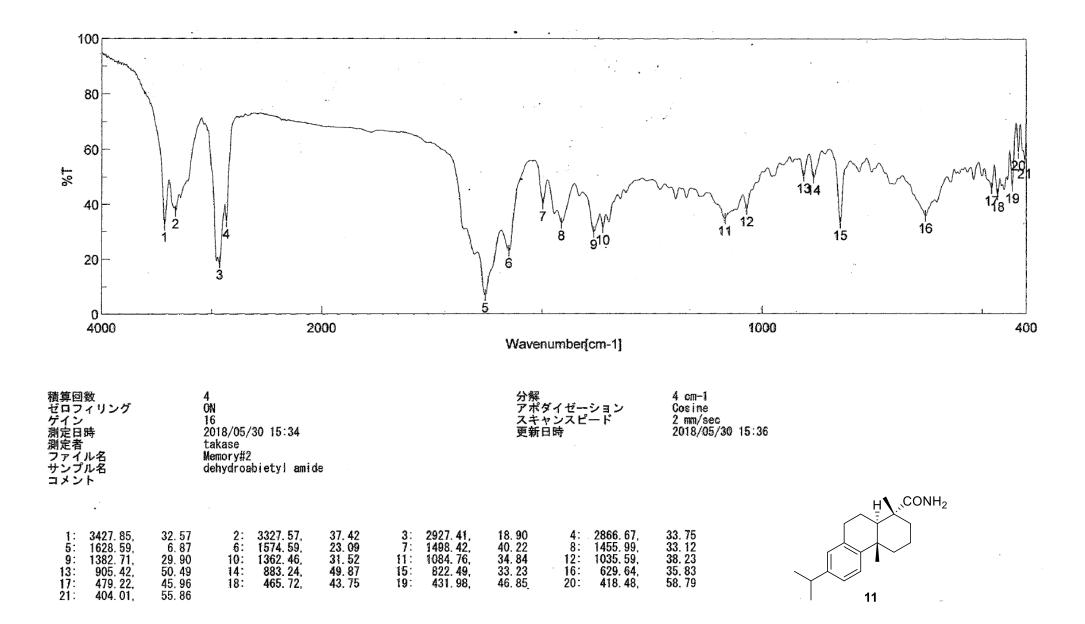


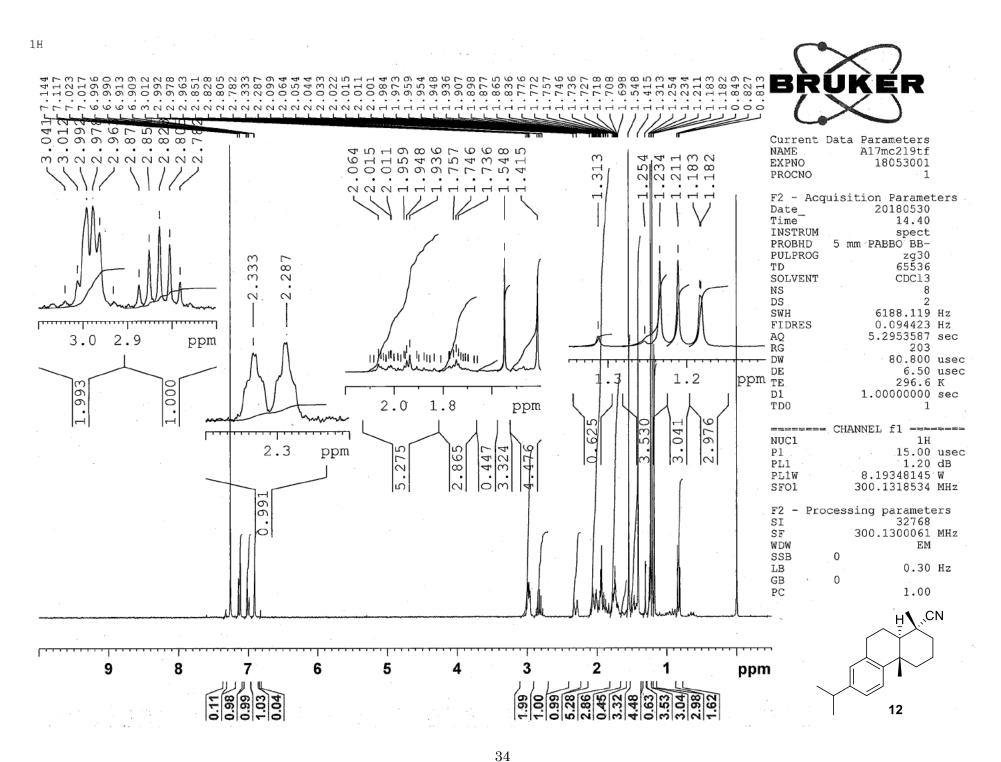

| 積算回数    | 8                | 分解        | 4 cm-1           |
|---------|------------------|-----------|------------------|
| ゼロフィリング | ON               | アポダイゼーション | Cosine           |
| ゲイン     | 16               | スキャンスピード  | 2 mm/sec         |
| 測定日時    | 2019/01/26 14:14 | 更新日時      | 2019/01/26 14:15 |
| 測定者     | takase           |           |                  |
| ファイル名   | Memor v#2        |           |                  |


- ファイル名 サンプル名 コメント


| LUIN | uvv. |            |  |
|------|------|------------|--|
| Mem  | ory‡ | <b>‡</b> 2 |  |
|      |      |            |  |


88. (S)-N-AcO-2-(6-methoxy-2-naphthyl)propionamidine


| 1:<br>9:<br>13:<br>17:<br>21:<br>29:<br>33: | 3449.06,<br>2962.13,<br>1744.30,<br>1463.71,<br>1371.14,<br>1173.47,<br>956.52,<br>813.81,<br>643.14, | 39. 29<br>52. 31<br>6. 59<br>32. 22<br>26. 73<br>22. 32<br>39. 60<br>21. 00<br>60. 92 | 2:<br>6:<br>10:<br>14:<br>18:<br>22:<br>26:<br>30:<br>34: | 3332. 39,<br>2936. 09,<br>1626. 66,<br>1438. 64,<br>1344. 14,<br>1118. 51,<br>926. 63,<br>765. 60,<br>606. 50, | 32. 57<br>46. 22<br>2. 69<br>50. 95<br>65. 00<br>36. 18<br>35. 48<br>62. 91<br>55. 16 | 3:<br>7:<br>15:<br>19:<br>23:<br>27:<br>31:<br>35: | 3196. 43,<br>2841. 60,<br>1505. 17,<br>1418. 39,<br>1266. 04,<br>1026. 91,<br>885. 17,<br>735. 71,<br>497. 54, | 44. 47<br>61. 19<br>39. 61<br>57. 71<br>24. 50<br>21. 13<br>16. 85<br>74. 10<br>50. 48 | 4:<br>8:<br>12:<br>16:<br>20:<br>24:<br>28:<br>32:<br>36: | 3060. 48,<br>1921. 72,<br>1485. 88,<br>1392. 35,<br>1226. 51,<br>1009. 55,<br>855. 28,<br>675. 93,<br>476. 33, | 56. 69<br>92. 47<br>35. 63<br>23. 48<br>2. 12<br>23. 39<br>14. 44<br>57. 24<br>27. 67 |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| 33:<br>37:                                  | 643. 14,<br>459. 94,                                                                                  | 60.92<br>44.15                                                                        | 34:<br>38:                                                | 606.50,<br>419.44,                                                                                             | 55. 16<br>45. 77                                                                      | 35:                                                | 497.54,                                                                                                        | 50.48                                                                                  | 36:                                                       | 476.33,                                                                                                        | 27.67                                                                                 |  |







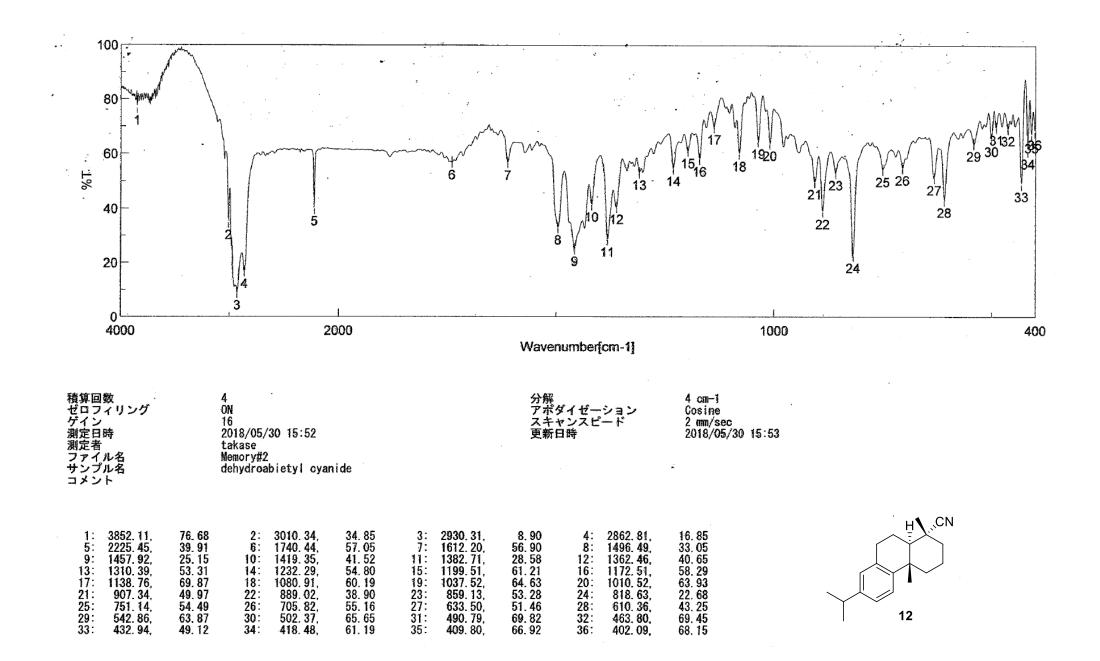




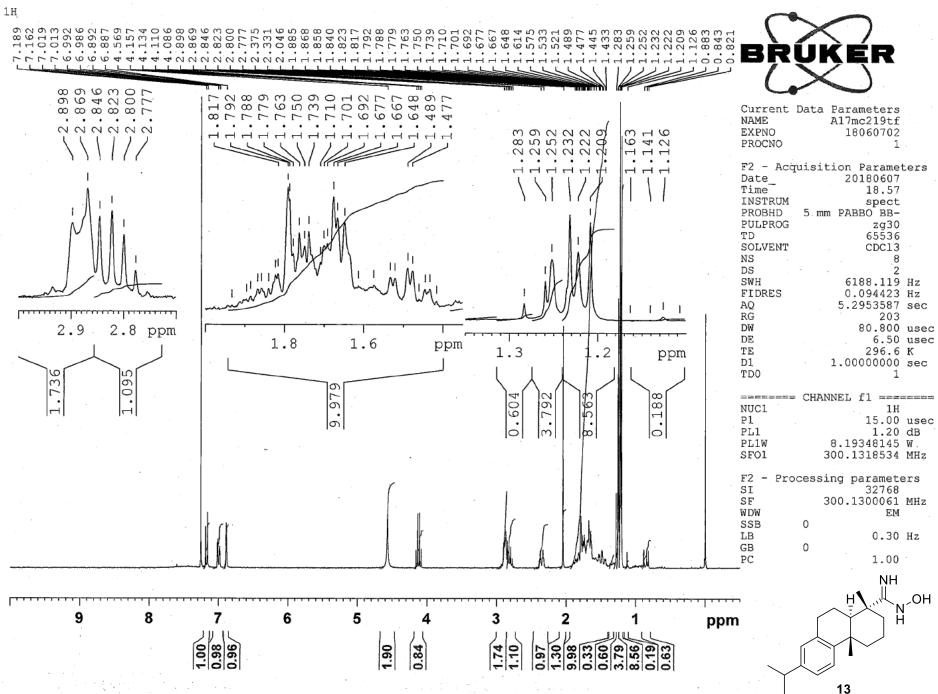



13C with dec. CPQNP

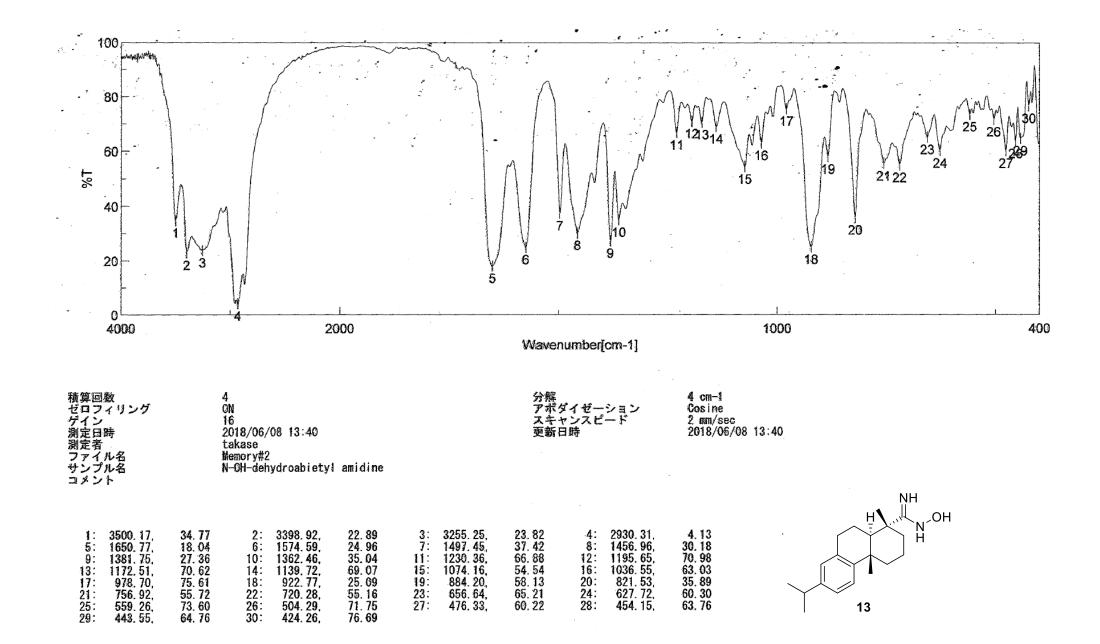


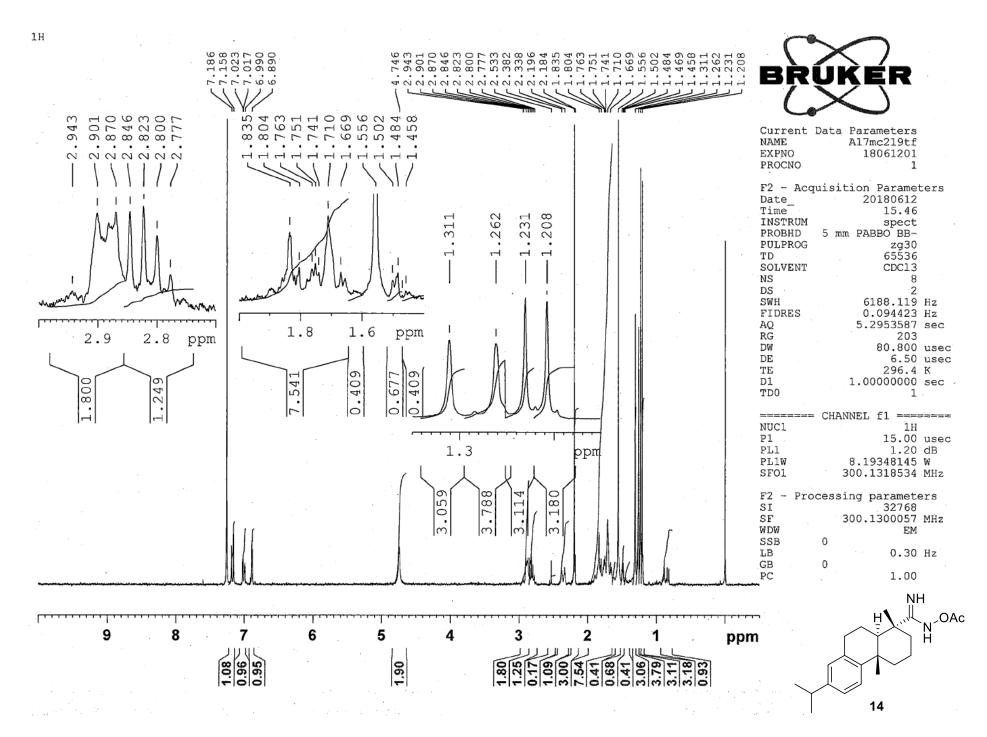

170 160 150 140 130 120



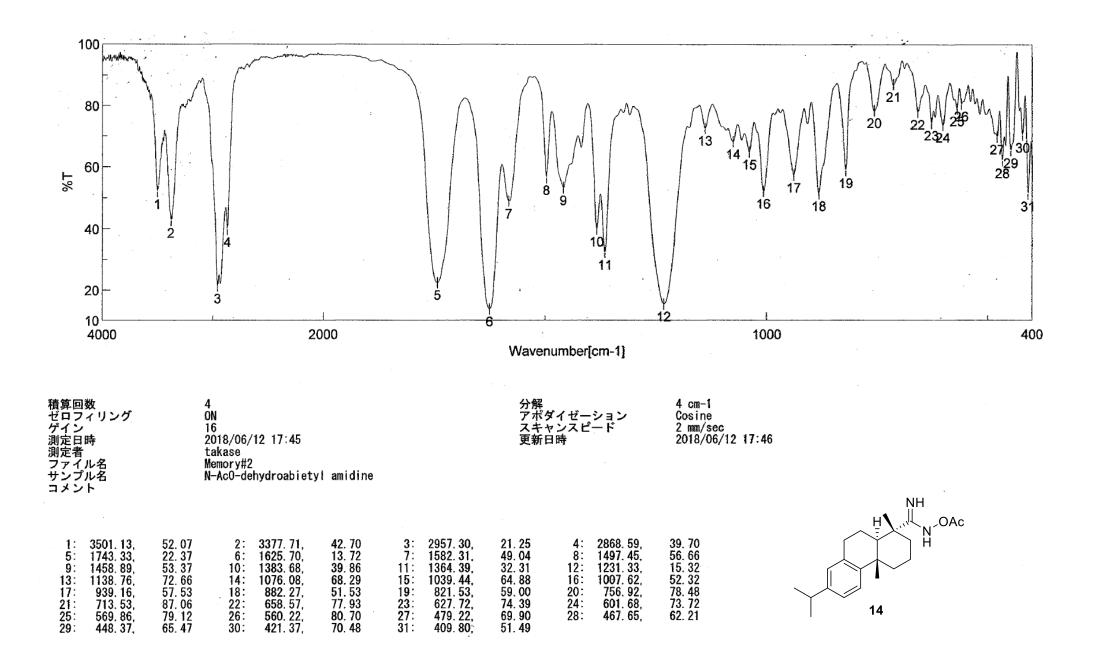


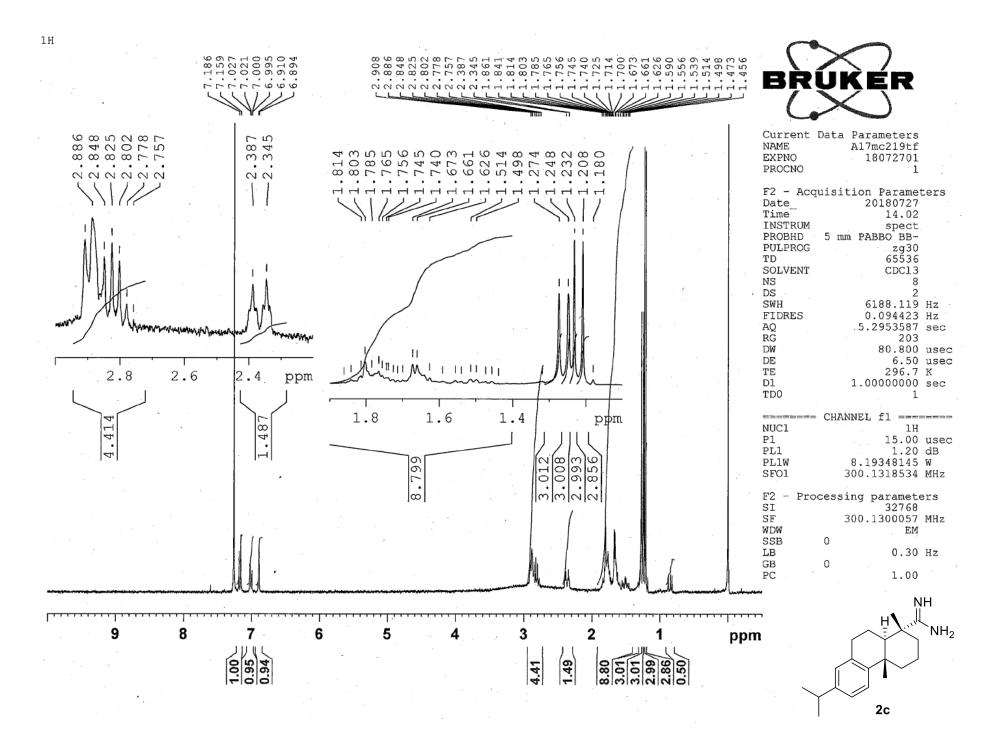

|                              | Current 1                                                                                                      | Nata | Dars                     | mot                                 | are                                                                              |        |
|------------------------------|----------------------------------------------------------------------------------------------------------------|------|--------------------------|-------------------------------------|----------------------------------------------------------------------------------|--------|
|                              | NAME                                                                                                           | Jaca | A17n                     |                                     |                                                                                  |        |
|                              | EXPNO                                                                                                          |      |                          | 010                                 |                                                                                  |        |
|                              | PROCNO                                                                                                         |      |                          |                                     | 1                                                                                |        |
|                              | F2 - Acqu<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>SWH<br>FIDRES<br>AQ<br>RG |      | 20<br>n CPC<br>297<br>0. | 190<br>13<br>sp<br>2NP<br>zgp<br>65 | amet<br>107<br>.23<br>ect<br>1H/<br>g30<br>536<br>Cl3<br>64<br>904<br>131<br>548 | · ·    |
|                              | DW                                                                                                             |      |                          | 16.                                 |                                                                                  | usec   |
|                              | DE                                                                                                             |      |                          |                                     |                                                                                  | usec   |
|                              | TE                                                                                                             |      |                          |                                     | 0.0                                                                              | ĸ      |
|                              | D1<br>D11 .                                                                                                    |      | 2.00                     |                                     |                                                                                  | sec    |
|                              | TD0                                                                                                            |      | 0.03                     | 000                                 | 1                                                                                | sec    |
|                              |                                                                                                                |      |                          |                                     |                                                                                  |        |
|                              | NUC1                                                                                                           | CHAI | NNEL                     |                                     | 13C                                                                              |        |
|                              | P1 .                                                                                                           |      |                          |                                     |                                                                                  | usec   |
|                              | PLW1<br>SFO1                                                                                                   |      | 15.50<br>100.6           |                                     |                                                                                  | WMHz   |
|                              |                                                                                                                |      | NNEL                     |                                     | *23                                                                              |        |
|                              | CPDPRG2                                                                                                        |      |                          | alt                                 |                                                                                  |        |
|                              | NUC2                                                                                                           |      |                          |                                     | 1H                                                                               |        |
|                              | PCPD2                                                                                                          |      |                          |                                     | .00                                                                              | usec   |
|                              | PLW2<br>PLW12                                                                                                  |      | 5.19                     |                                     |                                                                                  | W<br>W |
|                              | PLW12<br>PLW13                                                                                                 |      | 0.11                     |                                     |                                                                                  | w ·    |
|                              | SF02                                                                                                           | 4    | 400.1                    |                                     |                                                                                  | MHz    |
|                              | F2 - Proc                                                                                                      |      |                          |                                     | moto                                                                             |        |
|                              | SI - F100                                                                                                      |      | ing p                    |                                     | 768                                                                              | :15    |
|                              | SF                                                                                                             | 5    | 100.6                    |                                     |                                                                                  | MHz    |
|                              | WDW                                                                                                            |      |                          |                                     | ΕM                                                                               |        |
|                              | SSB .<br>LB                                                                                                    | 0    |                          | ~                                   |                                                                                  | IIa    |
|                              | GB                                                                                                             | 0    |                          |                                     | .00                                                                              | Hz     |
|                              | PC                                                                                                             | Ŭ    |                          | 1                                   | .40                                                                              |        |
|                              |                                                                                                                |      |                          |                                     | ₽₹                                                                               |        |
|                              |                                                                                                                |      | /                        | $\sim$                              | ~                                                                                |        |
| kas, niji ka<br>Kasa jini ka |                                                                                                                |      |                          | Ţ                                   | $\uparrow$                                                                       |        |
| ppm                          |                                                                                                                | Ĭ    | ž                        | 1                                   | 2                                                                                |        |







| 160                                                                                                              | 145.85<br>134.75<br>126.97<br>124.02                                       |                                                              | 46.33<br>42.75<br>31.53<br>31.53<br>31.59<br>98             | 40-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |                                                                            |                                                              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current Data Parameters<br>NAME A17mc219tf<br>EXPNO 19010801<br>PROCNO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                  |                                                                            |                                                              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F2 - Acquisition Parameter         Date_       20190109         Time       10.06         INSTRUM       spect         PROBHD       5 mm CPQNP 1H/         PULPROG       zgpg30         TD       65536         SOLVENT       CDC13         NS       64         DS       2         SWH       29761.904 Hz         FIDRES       0.454131 Hz         AQ       1.010548 see         RG       91.75         DW       16.800 us         DE       18.00 us         DE       18.00 us         DE       10.000000 se         D1       0.03000000 se         D11       0.03000000 se         TD0       1 |
|                                                                                                                  |                                                                            |                                                              |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hermitian       Channel fl =====:         NUC1       13C         P1       12.00 W         PLW1       15.5000000 W         SF01       100.6248425 M         ======       CHANNEL f2 =====:         CPDPRG2       waltz16         NUC2       1H         PCPD2       90.00 W         PLW2       5.19999981 W         PLW12       0.14444000 W         PLW13       0.1170000 W                                                                                                                                                                                                                   |
| ر المع الم والمعالم، والمعد المع المالية والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم | le a her safe for said a foto as a said a sch the side as a base a foto as | hall a star all listed block days, by a day of a start and a | فالمتعرب والمكانس والمسالم والمستراصف إن الطواف المناط والم | the state of the first of the state of the s | SF02 400.1316005 MH<br>F2 - Processing parameters<br>SI 32768<br>SF 100.6127690 MH<br>WDW EM<br>SSB 0<br>LB 2.00 Hz<br>GB 0<br>PC 1.40<br>NH<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                            |





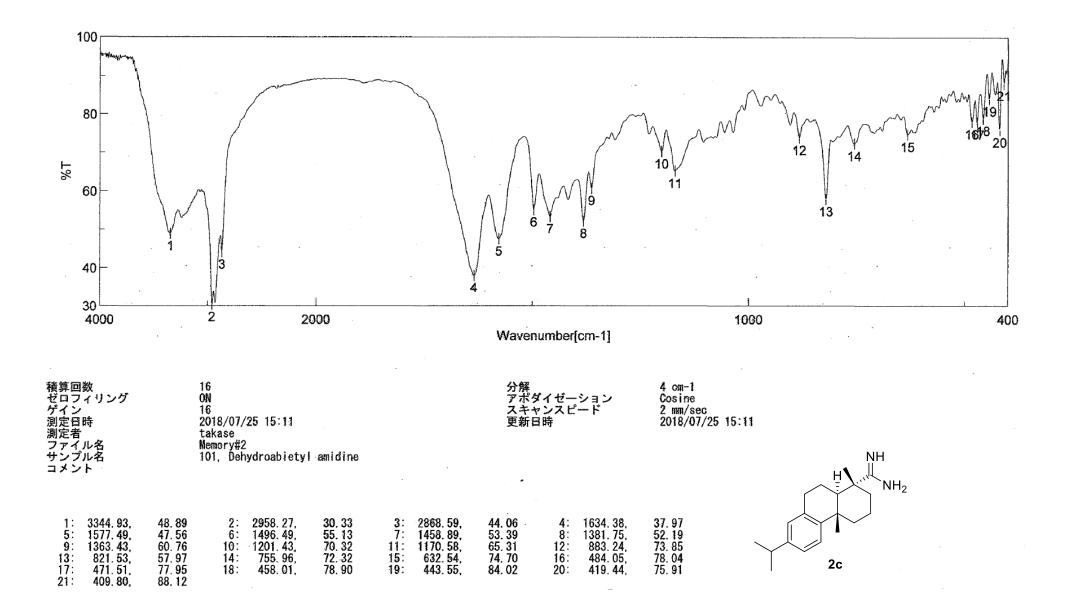
|  | 46.40<br>43.44<br>43.44<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.40<br>44.400 | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current Data Parameters<br>NAME Al7mc219tf<br>EXPNO 19011001<br>PROCNO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F2 - Acquisition Parameters         Date20190110         Time       12.36         INSTRUM       spect         PROBHD       5 mm CPQNP 1H/         PULPROG       zgpg30         TD       65536         SOLVENT       CDC13         NS       256         DS       2         SWH       29761.904 Hz         FIDRES       0.454131 Hz         AQ       1.1010548 sec         RG       126.99         DW       16.800 use         DE       18.00 use         TE       300.0 K         D1       2.00000000 sec         D11       0.0300000 sec         TD0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ended         CHANNEL         fl         Ended         Ended <the< td=""></the<> |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CPDPRG2         waltz16           NUC2         1H           PCPD2         90.00 us           PLW2         5.19999981 W           PLW12         0.14444000 W           PLW13         0.11700000 W           SFO2         400.1316005 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F2 - Processing parameters<br>SI $32768$<br>SF $100.6127690$ MH<br>WDW EM<br>SSB 0<br>LB $2.00$ Hz<br>GB 0<br>FC $1.40$<br>H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

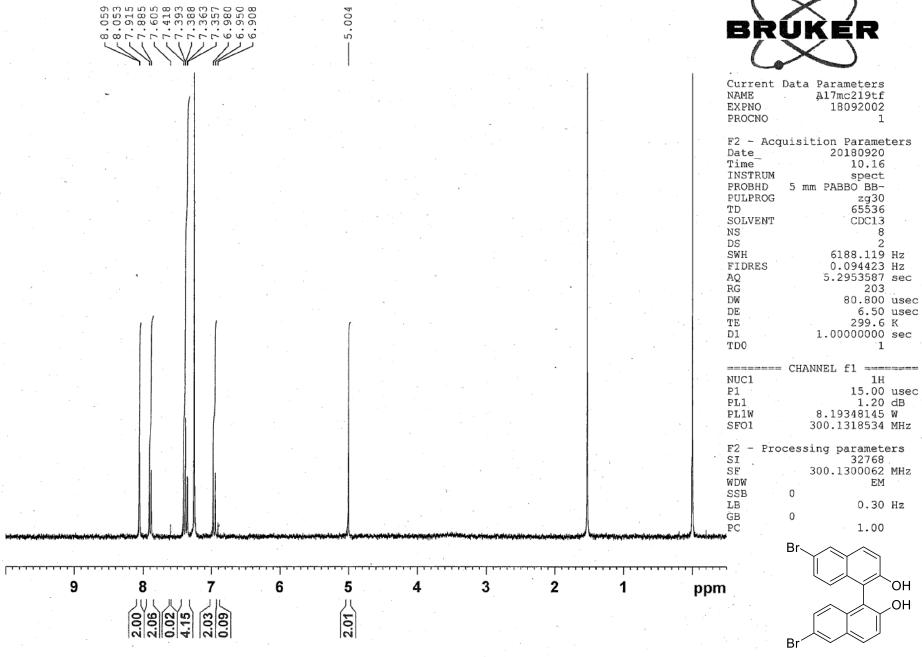




| 1            |         |    |       |
|--------------|---------|----|-------|
| 13C with dec | . CPQNP |    |       |
| on i         | - F     | 4  | ω u u |
|              | იი      | ú  | 000   |
| · · · ·      | • . •   |    |       |
| 4            | 20      | 4  | 644   |
| 5            | 4 4     | ŝ  | NNN   |
| ·            | - A - A | -1 |       |
|              | Υ/-     |    | ١V    |

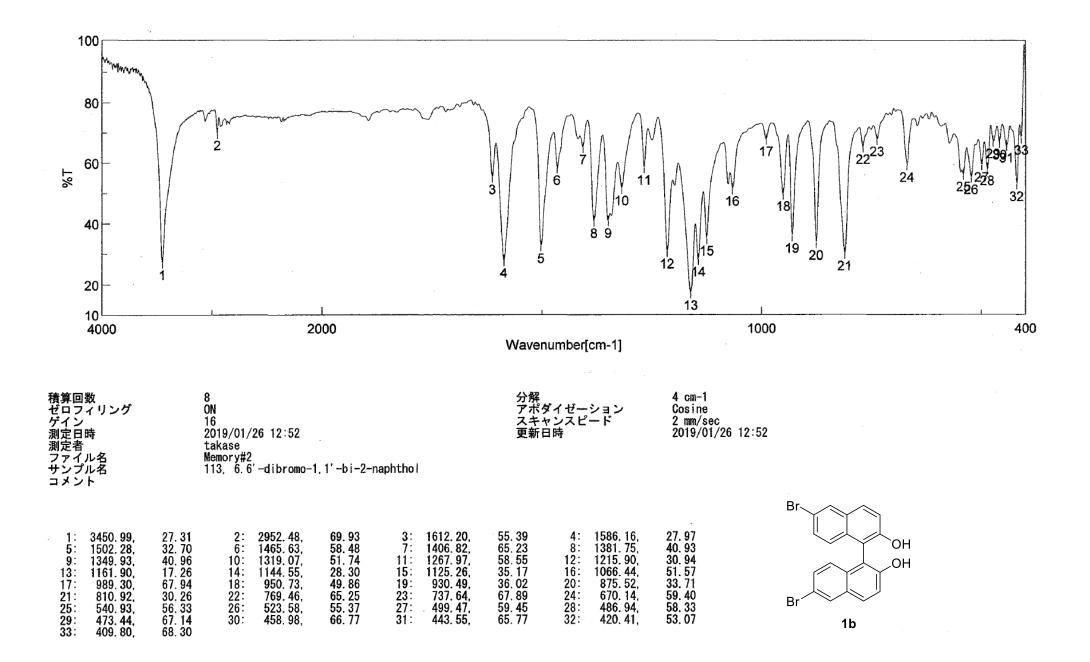
. 1


46.80  $M^{-}M^{+}$ 

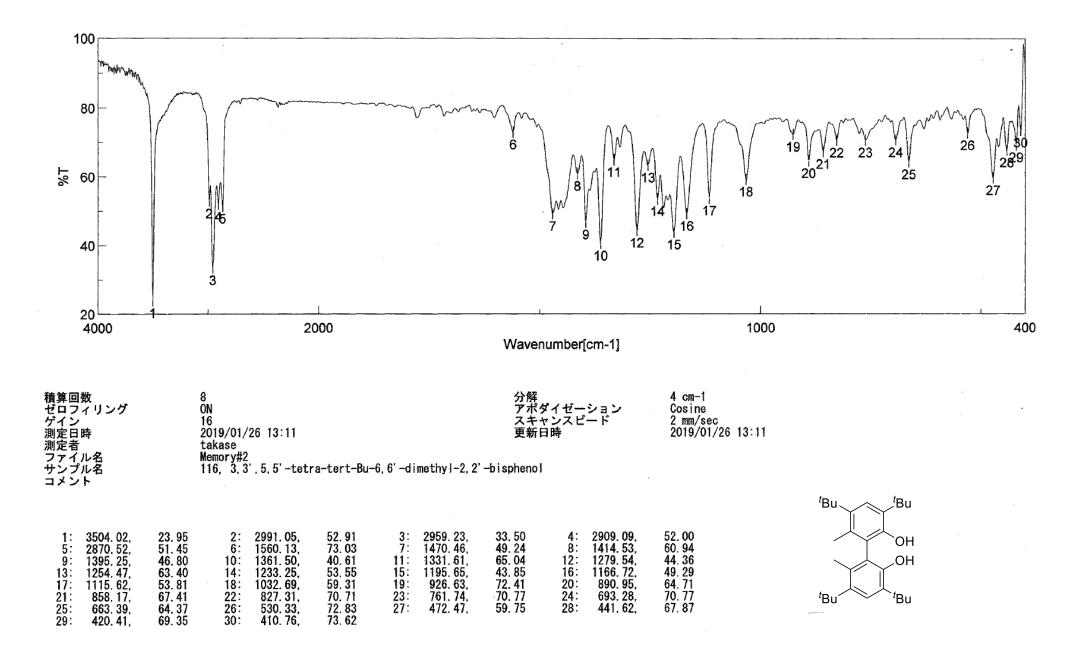


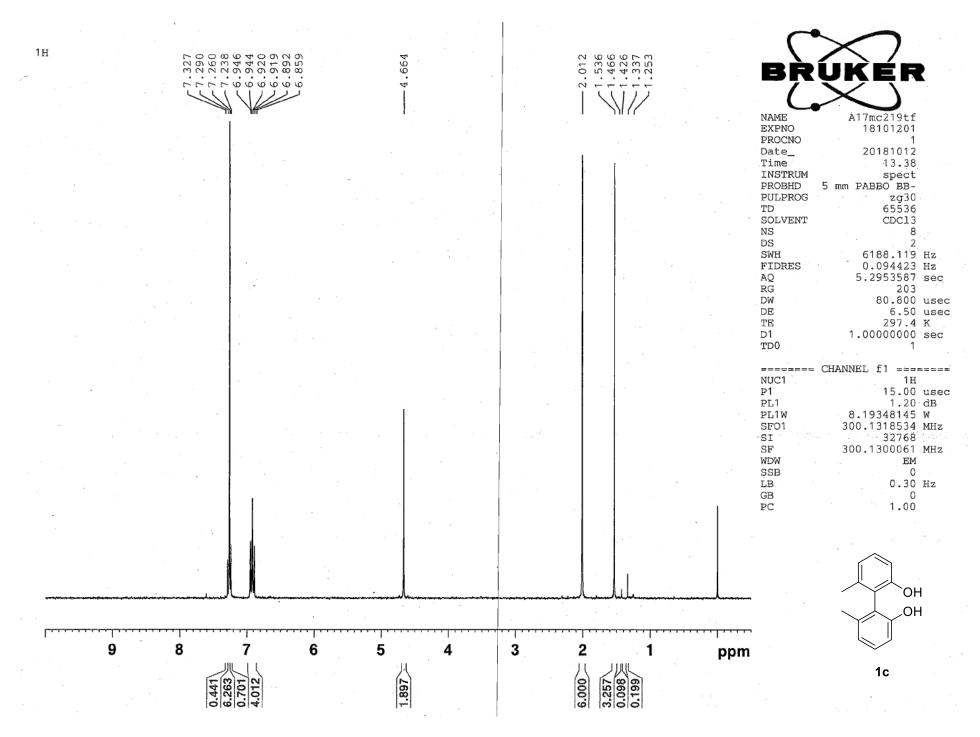

| Current<br>NAME<br>EXPNO<br>PROCNO                                                     | Data              | A17r       | amete<br>nc219<br>90110                           | 9tf                            |                 |
|----------------------------------------------------------------------------------------|-------------------|------------|---------------------------------------------------|--------------------------------|-----------------|
| F2 - Acc<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS | quisi<br>5 m      | 20         | 1901<br>12<br>spe<br>20NP 1<br>zgpg<br>655<br>CDC | 110<br>52<br>20t<br>1H/<br>330 | ers             |
| SWH                                                                                    |                   | 297        | 61.9                                              | 904                            | Hz              |
| FIDRES                                                                                 |                   |            | 4541                                              |                                | Hz .            |
| AQ<br>RG                                                                               |                   | 1.1        | .0105                                             |                                | sec             |
| DW                                                                                     |                   |            | 126.8                                             |                                | usec            |
| DE                                                                                     |                   |            |                                                   |                                | usec            |
| TE                                                                                     |                   |            |                                                   | 0.0                            | K               |
| DI                                                                                     |                   | 2.00       | 00000                                             |                                | sec             |
| D11                                                                                    |                   | 0.03       | 0000                                              | 000                            | sec             |
| TD0                                                                                    |                   |            |                                                   | 1                              |                 |
| NUC1                                                                                   | CHAI              | NEL        | 3                                                 | .3C                            |                 |
| PLW1                                                                                   |                   | 15.50      |                                                   |                                | usec<br>W       |
| SF01                                                                                   |                   | 100.6      |                                                   |                                | MHz             |
|                                                                                        |                   |            |                                                   |                                | 11112           |
| CPDPRG2<br>NUC2                                                                        | = CHAI            |            | f2 =<br>altz                                      |                                |                 |
| PCPD2                                                                                  |                   |            |                                                   |                                | usec            |
| PLW2                                                                                   |                   |            | 9999                                              |                                | W               |
| PLW12<br>PLW13                                                                         |                   |            | 4440                                              |                                | W               |
| SFO2                                                                                   |                   | 100.11     | .7000                                             |                                | W<br>MHz        |
| SF02                                                                                   |                   | 100.1      | 3100                                              | 05                             | Pinz            |
|                                                                                        | cess              | ing p      |                                                   |                                | ers .           |
| SI                                                                                     | ÷ .               |            | 327                                               |                                |                 |
| SF<br>WDW                                                                              |                   | 100.6      | 1276                                              | EM                             | MHz             |
| SSB                                                                                    | 0                 |            |                                                   | EN                             |                 |
| LB                                                                                     |                   |            | 2.                                                | 00                             | Hz              |
| GB .                                                                                   | 0                 |            |                                                   | · .                            |                 |
| PC                                                                                     |                   |            | 1.                                                | 40                             |                 |
|                                                                                        |                   |            |                                                   | N                              | Η               |
|                                                                                        |                   |            |                                                   |                                |                 |
|                                                                                        |                   | , t        | ! 🔪                                               | , 14                           | NILI            |
|                                                                                        | /                 | $\sim$     | $\sim$                                            |                                | NH <sub>2</sub> |
|                                                                                        |                   |            |                                                   |                                |                 |
|                                                                                        | <b>1</b>          |            |                                                   |                                |                 |
| i                                                                                      | $\langle \rangle$ | $\leq$     | $\sim$                                            |                                |                 |
|                                                                                        |                   | _ <b>I</b> |                                                   |                                |                 |

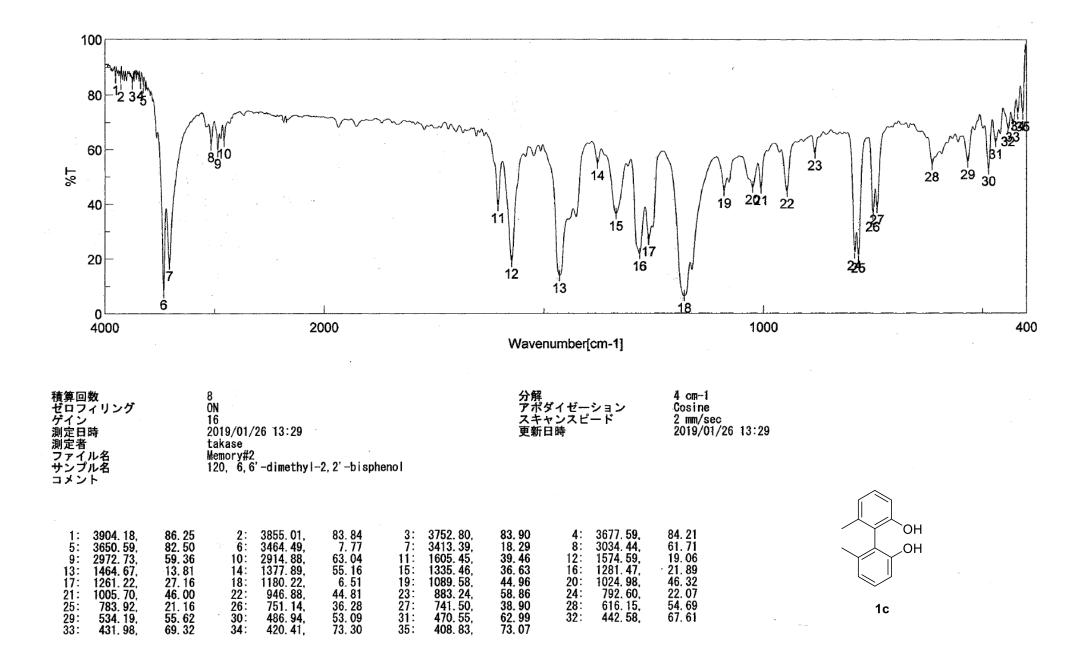
2c

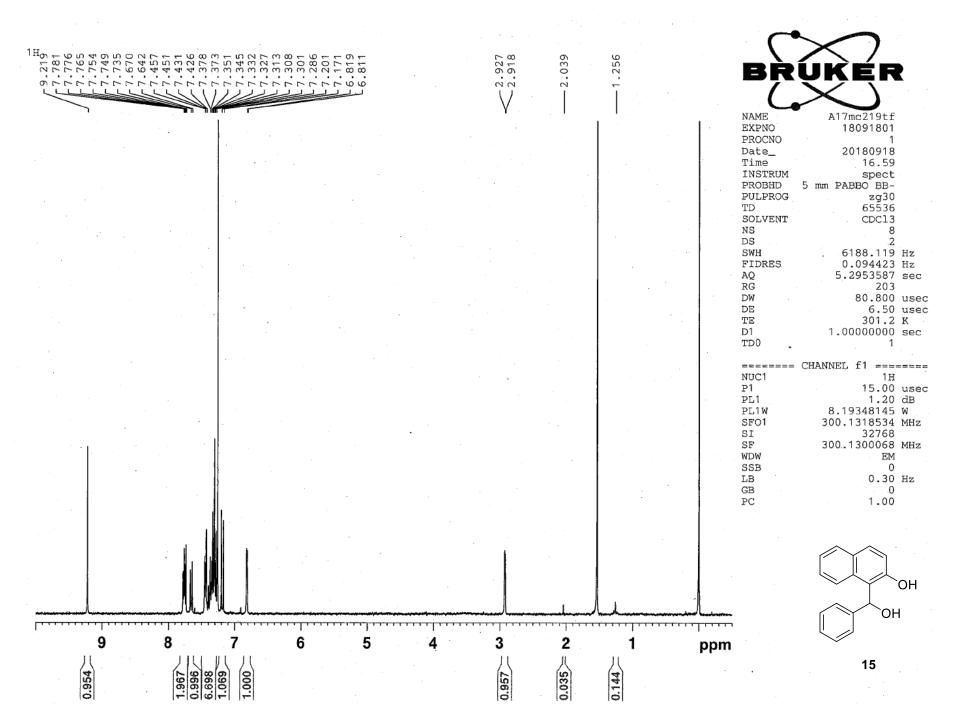

| ,<br>I | ۰<br>۱۹۹۹ - ۲۰۰۹<br>۱۹۹۹ - ۲۰۰۹<br>۱۹۹۹ - ۲۰۰۹ |  |  |  |  |  |  |  |
|--------|------------------------------------------------|--|--|--|--|--|--|--|
|        |                                                |  |  |  |  |  |  |  |

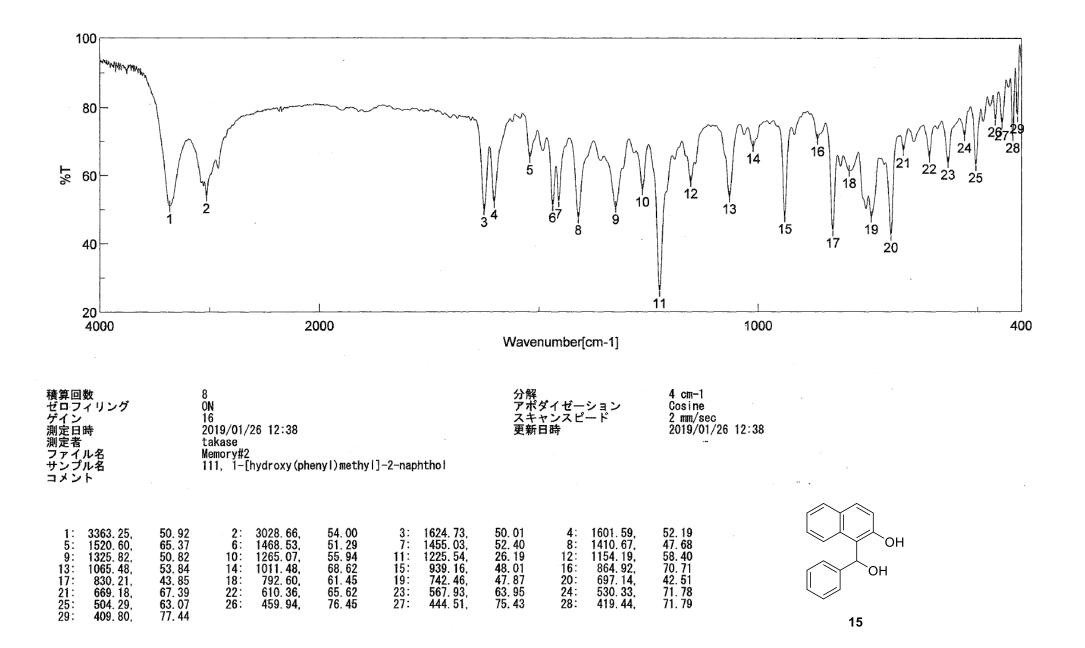






1H


1b





| LH<br>, | 7.386 | 4.799 | 1.403                 | Current Data Parameters<br>NAME A17mc219tf<br>EXPNO 18100301<br>PROCNO 1                                                                                                                                                                                                                                                                                                               |
|---------|-------|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |       |       |                       | $\begin{array}{ccccc} F2 & - \ Acquisition \ Parameters \\ Date 20181003 \\ Time 11.21 \\ INSTRUM spect \\ PROBHD 5 \ mm \ PABBO \ BB - \\ PULPROG 2g30 \\ TD 65536 \\ SOLVENT CDC13 \\ NS 8 \\ DS 2 \\ SWH 6188.119 \ Hz \\ FIDRES 0.094423 \ Hz \\ AQ 5.2953587 \ sec \\ RG 203 \\ DW 80.800 \ usec \\ DE 6.50 \ usec \\ TE 299.5 \ K \\ D1 1.0000000 \ sec \\ TD0 1 \\ \end{array}$ |
|         |       |       |                       | NUC1       1H         P1       15.00 usec         PL1       1.20 dB         PL1W       8.19348145 W         SF01       300.1318534 MHz         F2 - Processing parameters       32768         SF       300.1300064 MHz         WDW       EM         SSB       0         LB       0.30 Hz         GB       0         PC       1.00                                                      |
| 98      | 7 6   | 5 4 3 | 2 1<br>18.54<br>18.54 | ppm<br>tBu<br>OH<br>tBu<br>tBu<br>tBu                                                                                                                                                                                                                                                                                                                                                  |

