Electronic Supplementary Material (ESI) for RSC Advances

Configurable Switching Behavior in the Polymer-based Resistive Memories by Adopting Unique Electrode/Electrolyte Arrangement

^aKarthik Krishnan^{*}, ^aShaikh Mohammad Tauquir, ^aSaranyan Vijayaraghavan, and ^bRamesh Mohan

^aCorrosion and Material Protection Division, CSIR-Central Electrochemical Research Institute,

Karaikudi, Tamil Nadu-630003, India.

^b Microsystem Packaging Group, CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan-333031, India. E-mail: <u>karthikk@cecri.res.in</u>

S. No	Content	Page no.
1	Current–voltage (I–V) plot of forming processes	S-2
2	Log $I-V$ plot and corresponding linear $I-V$ plot	S-3
3	The depth-profiling XPS spectra of Al/PMMA/Al pristine device	S-4
4	O 1s signals of the depth-profiling XPS spectra of Al/AgNP-PMMA/Al	S-4
5	Ag 3d signals of the depth-profiling XPS spectra of Al/AgNP-PMMA/Al	S-5
6	O 1s signal of the depth-profiling XPS spectra of the Al/Ag /PMMA/Al device	S-5
7	Atomic force microscopy (AFM) images of PMMA film	S-6
8	Table: The mean value (μ) and standard deviation (σ) of the $V_{\text{SET}}/V_{\text{RESET}}$ and $R_{\text{LRS}}/R_{\text{HRS}}$	S-7

Fig. S1 The *I*–*V* plots of the forming process of the devices measured under (a) $I_{CC} = 10 \ \mu\text{A}$, (b) $I_{CC} = 30 \ \mu\text{A}$ and (c) the plot between I_{CC} and forming voltage (evaluated from the *I*–*V* data of 5 devices at each I_{CC}).

Fig. S2 (a and c) The current minimum in a logarithmic scale of the I-V behaviour, corresponding to a (b) zero-current crossing point and (d) non-zero current crossing in a linear scale of the Al/Ag/PMMA/Al and Al/PMMA/Al devices, respectively.

Fig. S3 Depth-profiling XPS scans of (a) Al 2p and (b) O 1s signals of the pristine Al/PMMA/Al device (HRS).

Fig. S4 O 1s signals of the depth-profiling XPS spectra of Al/AgNP-PMMA/Al device.

Fig. S5 Ag 3d signals of the depth-profiling XPS spectra of Al/AgNP-PMMA/Al device.

Fig. S6 O 1s signals of the depth-profiling XPS spectra of Al/Ag/PMMA/Al device.

Fig. S7 (a) AFM image of the pure PMMA film and (b) AFM image of the etched film and (c) the corresponding thickness variation profile. The thickness of film is ~200 nm.

Device	Mean value (Iean value (μ) / Standard		Mean value (μ) / Standard deviation	
	deviation (σ)		(σ)		
	$V_{\rm SET}$ (V)	V_{RESET} (V)	$R_{ m LRS}\left(\Omega ight)$	$R_{ m HRS}\left(\Omega ight)$	
Al/PMMA/Al	2.28/ 0.70	-0.48/ 0.29	165.7/ 211.6	2.59×10 ⁹ / 2.64×10 ⁹	
Al/Ag/PMMA/Al	2.30/ 0.74	-0.88/ 0.38	218.5/ 210.2	4.58×10 ⁷ / 4.94×10 ⁷	
Al/AgNP-PMMA/Al	2.37/ 0.63	-0.44/ 0.17	67.9/ 117.7	6.50×10 ⁹ / 1.16×10 ¹⁰	
Al/Ag/AgNP- PMMA/Al	1.73/ 0.61	-0.36/ 0.17	419.8/ 312.1	4.65×10 ⁷ / 4.23×10 ⁷	

Table S1. The mean value (μ) and standard deviation (σ) of the $V_{\text{SET}}/V_{\text{RESET}}$ and $R_{\text{LRS}}/R_{\text{HRS}}$ data of all the devices