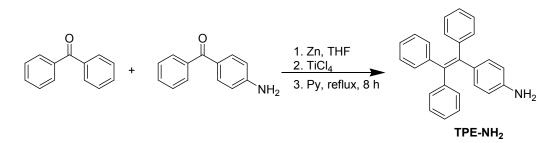
## **Supporting Information**

# Phthalimide Conjugation Turns AIE-Active Tetraphenylethylene Unit Non-Emissive: Its use in Turn-on Sensing of Hydrazine in Solution, Solidand Vapour-Phase

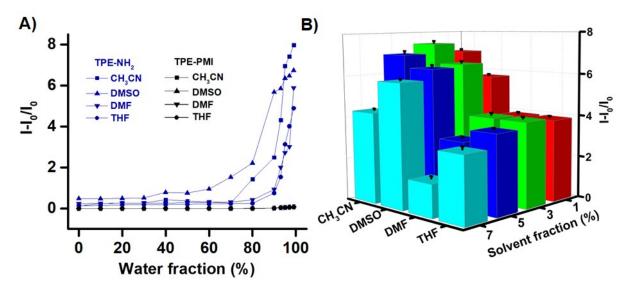
Sharanabasava D. Hiremath,<sup>a+</sup>, Ram U. Gawas <sup>a+</sup> Dharmendra Das,<sup>a</sup> Viraj G. Naik,<sup>a</sup> Akhil A. Bhosle,<sup>a</sup> Vishnu Priya Murali,<sup>b</sup> Kaustabh Kumar Maiti,<sup>b</sup> Raghunath Acharya,<sup>c,d</sup> Mainak Banerjee,<sup>\*,a</sup> Amrita Chatterjee<sup>\*,a</sup>

<sup>a</sup>Department of Chemistry, BITS, Pilani- K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.

<sup>b</sup>CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India.


<sup>c</sup>Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, INDIA.

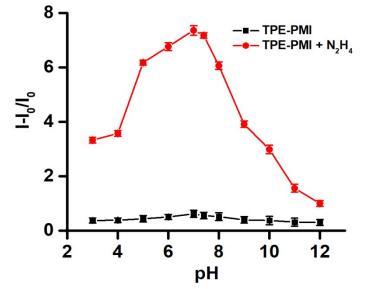
<sup>d</sup>Department of Atomic Energy, Homi Bhabha National Institute, Mumbai 400094, INDIA. Corresponding authors e-mail: <u>amrita@goa.bits-pilani.ac.in</u> (AC); <u>mainak@goa.bits-pilani.ac.in</u> (MB)


## **Table of Contents**

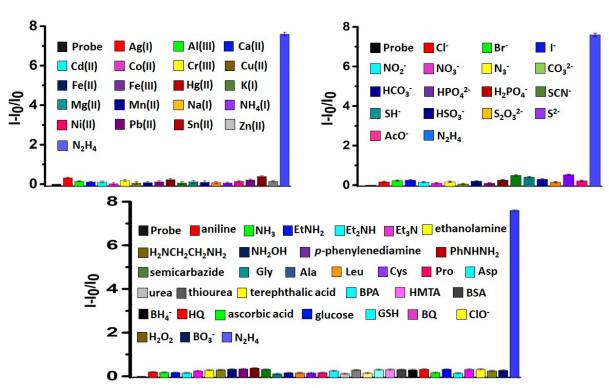
| Sr. No. | Contents                                                                                                 | Pg. No. |
|---------|----------------------------------------------------------------------------------------------------------|---------|
| 1       | Synthesis of <b>TPE-NH</b> <sub>2</sub>                                                                  | S2      |
| 2       | Fluorimetric responses of TPE-PMI and TPE- $NH_2$ in various solvents                                    | S2      |
| 3       | pH study of TPE-PMI with and without hydrazine                                                           | S3      |
| 4       | Selectivity study of TPE-PMI towards hydrazine                                                           | S3      |
| 5       | Quantum mechanical studies of TPE-PMI and TPE-NH <sub>2</sub>                                            | S4-S5   |
| 6       | LCMS analysis of the sensing solution                                                                    | S5      |
| 7       | Limit of detection                                                                                       | S6      |
| 8       | Detection of hydrazine in various real samples in solution phase                                         | S6      |
| 9       | Detection of hydrazine in sand samples                                                                   | S7      |
| 10      | Cytotoxicity and detection of hydrazine in HeLa cells                                                    | S7-S8   |
| 11      | Comparison of the present study and previous reports for the detection of hydrazine                      | S9-S11  |
| 12      | References                                                                                               | S11     |
| 13      | <sup>1</sup> H, <sup>13</sup> C NMR, HRMS and IR spectra of <b>TPE-PMI</b> and <b>TPE-NH<sub>2</sub></b> | S13-S15 |

#### 1. Synthesis of 4-(1,2,2-triphenylvinyl)benzenamine (TPE-NH<sub>2</sub>)<sup>1</sup>




In a three-necked flask, zinc powder (0.8 g, 12 mmol) in 20 mL anhydrous THF was taken and the reaction vessel was kept under nitrogen atmosphere. The mixture was cooled to 0 °C and TiCl<sub>4</sub> (0.65 mL, 6 mmol) was slowly added by a syringe. The suspension was warmed to room temperature and stirred for 30 min, then heated at reflux for 2.5 h. The mixture was again cooled to 0 °C, charged with pyridine (0.25 mL, 3 mmol) and stirred for 10 min at the cold condition. An equimolar mixture of 4-aminobezophenone (475 mg, 2.4 mmol) and benzophenone (440 mg, 2.4 mmol) in 20 mL of THF was added slowly. After complete addition, the reaction mixture was heated at reflux for 8 h. The reaction was quenched by addition of 10% aqueous K<sub>2</sub>CO<sub>3</sub> solution and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was collected and concentrated. The crude product was purified by column chromatography to give the desired product, **TPE-NH<sub>2</sub>** (320 mg, yield: 72%) as yellow solid. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 3.58 (2H, s, exchangeable), 6.46 (2H, d, *J* = 8.0 Hz), 6.89 (2H, d, *J* = 8.0 Hz), 7.03-7.26 (15H, m). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm) 114.4, 126.2, 126.3, 127.6, 127.8, 131.45, 131.49, 131.6, 132.6, 134.0, 139.4, 141.1, 144.27, 144.30, 144.5, 144.9; ESI-MS: *m/z* 348 [M + H]<sup>+</sup>.

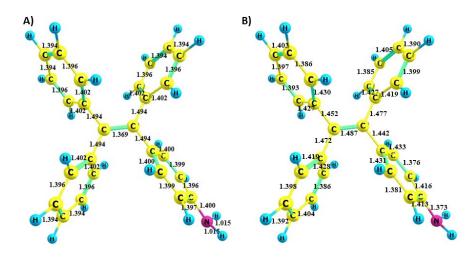



#### 2. Fluorimetric responses of TPE-PMI and TPE-NH<sub>2</sub> in various solvents

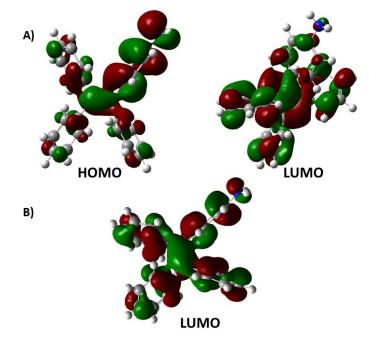
**Fig. S1. A)** Change in the fluorescence intensity of **TPE-NH**<sub>2</sub> and **TPE-PMI** at 492 nm as a function of different percentages of the water fraction in solvents like CH<sub>3</sub>CN, DMF, DMSO and THF; B) The fluorescence response of **TPE-PMI** towards hydrazine in different solvent fractions.

3. pH study of TPE-PMI with and without hydrazine




**Fig. S2** Fluorescence intensity change of **TPE-PMI** (10  $\mu$ M) in the absence and presence of hydrazine (10  $\mu$ M) in 3% CH<sub>3</sub>CN/ buffer solution [pH 2-6 acetate buffer, pH 7-8 HEPES buffer and pH 9-12 carbonate buffer] ( $\lambda_{ex} = 345$  nm,  $\lambda_{em} = 462$  nm).




#### 4. Selectivity study of TPE-PMI towards hydrazine

**Figure S3.** The fluorimetric responses of various metal ions (50  $\mu$ M), anions (50  $\mu$ M) and other molecules (50  $\mu$ M) towards **TPE-PMI** (10  $\mu$ M) under optimized conditions ( $\lambda_{ex}$  345 nm;  $\lambda_{em}$  462 nm).

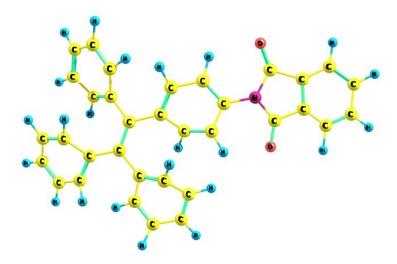
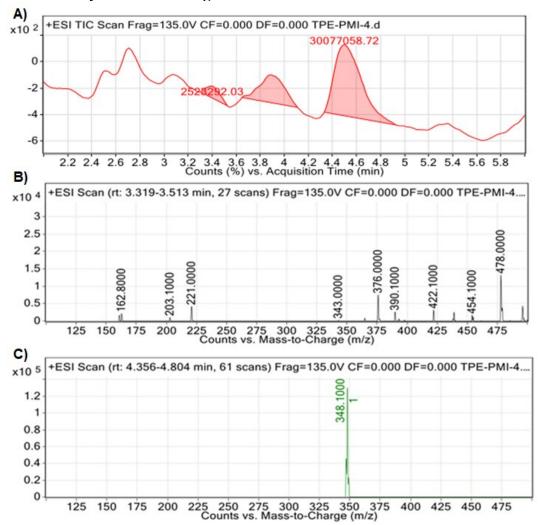
5. Quantum mechanical studies of TPE-PMI and TPE-NH<sub>2</sub>

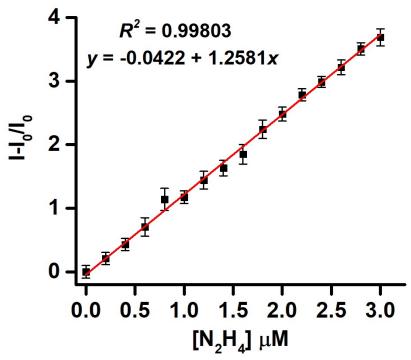


**Fig. S4** (A) Ground state geometry (optimized at the B3LYP/6-311G level) and (B) excited state geometry (optimized at the Td-B3LYP/6-311G level) of **TPE-NH**<sub>2</sub>.



**Figure S5.** The frontier molecular orbitals of **TPE-NH**<sub>2</sub> at the optimized (A) ground state and (B) excited state geometries.



Figure S6. Ground state geometry (optimized at the B3LYP/6-311G level) of TPE-PMI.



#### 6. LCMS analysis of the sensing solution

**Fig. S7** (A) LCMS analysis of the sensing solution (B) showing the cleavage of **TPE-PMI** (m/z peak at 478 [M + H]<sup>+</sup>); (C) upon addition of hydrazine to form a new m/z peak at 348 which corresponds to M + H of **TPE-NH**<sub>2</sub>.

#### 7. Limit of detection (LOD)



**Fig. S8** Plot of relative intensities vs concentration of hydrazine showing an excellent linear fit ( $R^2 = 0.99803$ ) which ensures that **TPE-PMI** can detect hydrazine as low as 0.2  $\mu$ M (or 6.4 ppb) ( $\lambda_{ex}$  345 nm,  $\lambda_{em}$  462 nm).


### 8. Detection of hydrazine in various real samples in solution phase

The concentration of hydrazine in five different water samples was closely matched with the amount of hydrazine spiked showing a recovery of 92-97%.

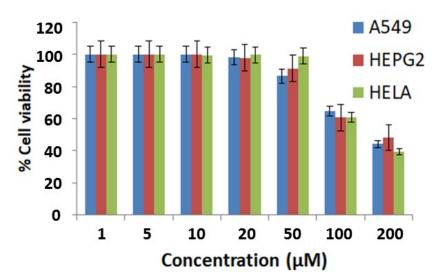

| Sr.<br>No. | Sample      | Concentration<br>found from the<br>graph<br>(µM) | Actual<br>concentration<br>(µM) | Recovery<br>(%) | RSD<br>(%)<br>(n = 3) |
|------------|-------------|--------------------------------------------------|---------------------------------|-----------------|-----------------------|
| 1.         | Field water | 0.24                                             | 0.25                            | 96              | 4.1                   |
| 2.         | Tap water   | 0.28                                             | 0.30                            | 93.3            | 3.3                   |
| 3.         | Pond water  | 0.33                                             | 0.35                            | 94.2            | 3.6                   |
| 4.         | Rain water  | 0.53                                             | 0.55                            | 96.3            | 3.9                   |
| 5.         | River water | 0.74                                             | 0.8                             | 92.5            | 3.3                   |

Table S1. Real sample analysis for hydrazine

9. Detection of hydrazine in sand samples



**Fig. S9.** The plots of the CTCF values of the images of the sensing assay at different concentrations of hydrazine spiked on the sand samples under long UV-light, captured on a smartphone and processed using ImageJ analysis software.



#### 10. Cytotoxicity and detection of hydrazine in HeLa cells

Fig. S10 Cytotoxicity by MTT assay of **TPE-PMI** at different concentrations is presented above. The bar graphs showed that more than 60% of the total cells were still viable in the presence of up to 50  $\mu$ M of **TPE-PMI** in the culture media of HeLa cells after 24 h. This implies that the **TPE-PMI** is nontoxic in nature.

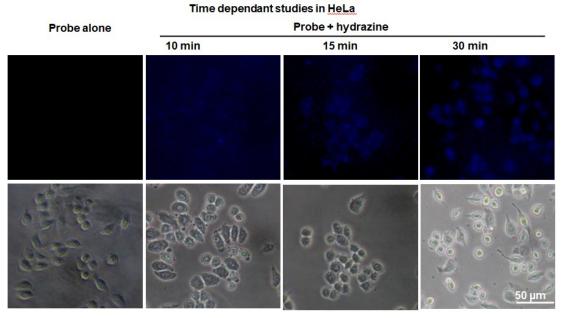
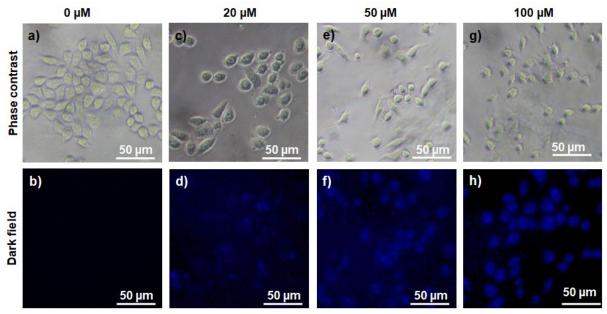




Fig. S11 Time-dependent fluorescence detection of toxic hydrazine deposition in HeLa cells treated 50  $\mu$ M hydrazine in serum-free DMEM to utilized sensing fluorescence probe TPE-PMI. HeLa cells incubated for 10-30 mins and washed with PBS buffer. Next, the cells were treated with TPE-PMI (10  $\mu$ M) for 60 min followed by PBS wash (3 times) and imaged under DAPI filter of Nikon fluorescent microscope.

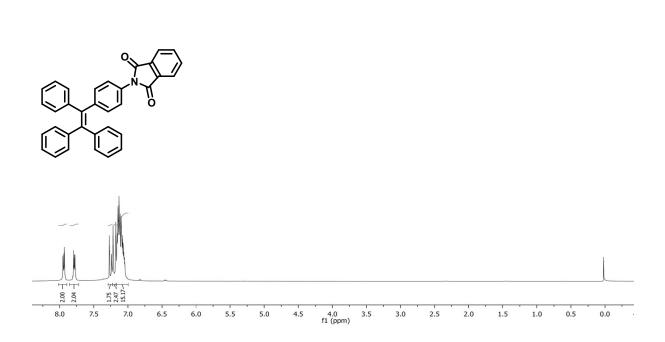


**Figure S12.** Pretreatment of HeLa cells with varying concentrations of hydrazine (a) and (b) **TPE-PMI** without hydrazine; (c) and (d) **TPE-PMI** and 20  $\mu$ M hydrazine; (e) and (f) **TPE-PMI** and 50  $\mu$ M hydrazine; (g) and (h) **TPE-PMI** and 100  $\mu$ M hydrazine.

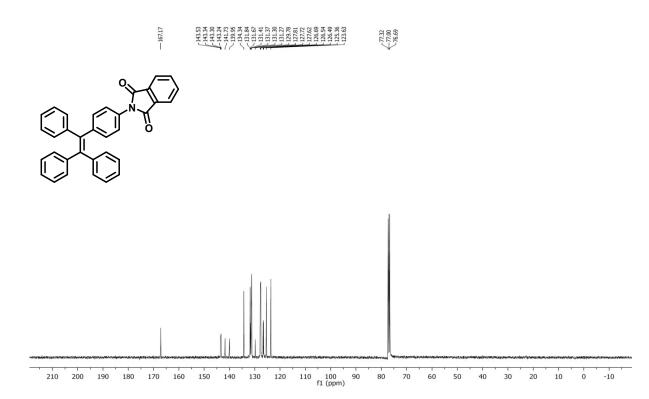
| Probe Structure and reaction<br>condition                                                    | Solvent System                                                             | LOD<br>(ppb) | Linear<br>Range<br>(µM) | Possible<br>interfering | Fluorescence<br>strategy | Ref<br>(Main<br>Manuscript) |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|-------------------------|-------------------------|--------------------------|-----------------------------|
|                                                                                              | DMSO-H <sub>2</sub> O<br>(10.0 µM HEPES<br>buffer, 3: 7 v/v,<br>pH = 7.4,) | 6.6          | 0.75 –<br>1.5           | None                    | ICT based<br>Turn-on     | Samanta et<br>al.<br>[2]    |
| 3 steps synthesis<br>(EtOH, DMF)                                                             |                                                                            |              |                         |                         |                          |                             |
| O <sub>2</sub> N<br>S<br>N                                                                   | DMSO/PBS<br>solution (1/1;<br>v/v, pH 7.4)                                 | 19.2         | 0 - 130                 | ClO-                    | ICT based<br>Turn-on     | Wang et al.<br>[3]          |
| 3 step synthesis<br>(Nitromethane, DMSO)                                                     |                                                                            |              |                         |                         |                          |                             |
|                                                                                              | DMSO/PBS (v/v<br>= 5:5, pH =<br>7.4)                                       | 25.6         | 0 – 10                  | CN-                     | ICT based<br>Turn-off    | Mu et al.<br>[4]            |
| 2 step synthesis<br>(ACN, piperidine)<br>$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | CH <sub>3</sub> CN/PBS (10<br>mM, pH = 7.10,<br>3/7, v/v)                  | 2.90         | 0-50                    | None                    | AIE-ICT<br>based Turn-on | Fan et al.<br>[5]           |
| S<br>N<br>O<br>O<br>O                                                                        | 1,4-dixoane/H <sub>2</sub> O<br>(10 mM, v/v =<br>9/1, pH = 7.4)            | 3.2          | 0-30                    | None                    | AIE-ICT<br>based Turn-on | Lin et al.<br>[6]           |
| 3 step synthesis<br>(1,4-dioxane, EtOH)                                                      |                                                                            |              |                         |                         |                          |                             |

# 11. Table S2 Comparison of the present study and previous reports for detection of hydrazine

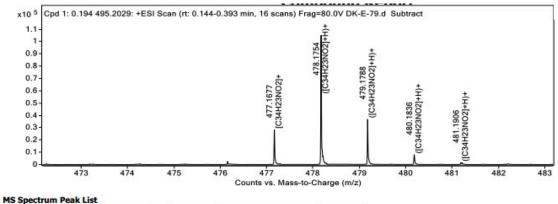
| 0,_N_0                                                                                                                                                                              | PBS Buffer (pH<br>7.4)                                       |       |         | None      | AIEE-ICT<br>based Turn-<br>off                 | Lyer et al.<br>[7]   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|---------|-----------|------------------------------------------------|----------------------|
|                                                                                                                                                                                     |                                                              | 0.081 | 0-0.5   |           |                                                |                      |
| R = н, -сно<br>2 step synthesis<br>(EtOH, THF:H <sub>2</sub> O (3:1))                                                                                                               |                                                              |       |         |           |                                                |                      |
|                                                                                                                                                                                     | HEPES (pH 7.4)                                               | 0.48  | 0 - 80  | None      | ICT based<br>Turn-off                          | Yu et al.<br>[8]     |
| 1 step synthesis (CH <sub>2</sub> Cl <sub>2</sub> )<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$ | DMF:PBS Buffer<br>(3:7, pH 7.4)                              | 5.2   | 0 – 600 | Bisulfite | Amination<br>Based<br>Turn-off                 | Su et al.<br>[9]     |
| EtO <sub>2</sub> C CN <sub>OH N</sub><br>H S<br>Br                                                                                                                                  | CH <sub>3</sub> CN–H <sub>2</sub> O<br>(1:9, v/v)            | 13.8  | 0 – 25  | None      | ESIPT based<br>Turn-on                         | Maiti et al.<br>[10] |
| 3 steps synthesis<br>(H <sub>2</sub> O <sub>2</sub> , TFA, EtOH)                                                                                                                    | DMSO                                                         | 2.6   | 2 – 12  | None      | ESIPT based<br>Turn-on                         | Yin et al.<br>[11]   |
| 3 steps synthesis<br>(EtOH, CH <sub>2</sub> Cl <sub>2</sub> )                                                                                                                       |                                                              |       |         |           |                                                |                      |
| 3 steps synthesis<br>(THF-H <sub>2</sub> O, CH <sub>3</sub> COOH)                                                                                                                   | HEPES buffer<br>(pH 7.2) using<br>Triton X 100<br>surfactant | 1.5   | 0-30    | None      | Cleavage by<br>gabriel<br>pathway<br>(Turn-on) | [12]                 |


|                                                              | CH <sub>3</sub> CN:PBS<br>Buffer (30:70, pH<br>7.4) | 2    | 10 – 20      | None | Cleavage by<br>Gabriel<br>pathway<br>(Turn-on) | Wan et al.<br>[13] |
|--------------------------------------------------------------|-----------------------------------------------------|------|--------------|------|------------------------------------------------|--------------------|
| 4 step synthesis                                             |                                                     |      |              |      |                                                |                    |
| (EtOH, ethyl acetate, acetic                                 |                                                     |      |              |      |                                                |                    |
| acid)                                                        |                                                     |      |              |      |                                                |                    |
|                                                              | CH <sub>3</sub> CN:HEPES<br>Buffer (1:1, pH<br>7)   | 85.4 | 100 –<br>400 | None | Cleavage by<br>Gabriel<br>pathway<br>(Turn-on) | Hu et al.<br>[14]  |
| 4 steps synthesis                                            |                                                     |      |              |      |                                                |                    |
| (DMF, AcOH, EtOH)                                            |                                                     |      |              |      |                                                |                    |
| TPE-PMI<br>1 steps synthesis<br>(mechanochemical, under neat | CH <sub>3</sub> CN:HEPES<br>(3:97 v/v)              | 6.4  | 0.2 - 3      | None | Cleavage by<br>Gabriel<br>pathway<br>(Turn-on) | Present<br>Work    |
| condition)                                                   |                                                     |      |              |      |                                                |                    |
| *                                                            |                                                     |      |              |      |                                                |                    |

## 12. Reference

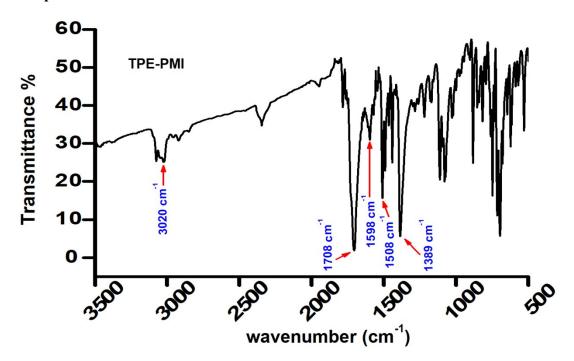

- 1. A. Chatterjee, D. G. Khandare, P. Saini, A. Chattopadhya, M. S. Majik and M. Banerjee, *RSC Adv.*, 2015, **5**, 31479.
- S. K. Samanta, K. Maiti, S. S. Ali, U. N. Guria, A. Ghosh, P. Datta and A. K. Mahapatra, Dyes Pigm., 2020, 173, 07997.
- 3. L. Wang, Q. Pan, Y. Chen, Y. Ou, H. Li and B. Li, *Spectrochim. Acta Part A*, 2020, **241**, 118672.
- S. Mu, H. Gao, C. Li, S. Li, Y. Wang, Y. Zhang, C. Ma, H. Zhang and X. Liu, *Talanta*, 2021, 221, 121606.
- 5. H. Wu, Y. Wang, W.-N. Wu, Z.-Q. Xu, Z.-H. Xu, X.-L. Zhao and Y.-C. Fan, *Spectrochim. Acta Part A*, 2019, **222**, 117272.
- 6. X. Kong, M. Li, Y. Zhang, Y. Yin and W. Lin, Sens. Actuators B, 2021, 329, 129232.
- 7. N. Meher, S. Panda, S. Kumar and P. K. Iyer, Chem. Sci., 2018, 9, 3978.

- 8. Y. Song, G. Chen, X. Han, J. You and F. Yu, Sens. Actuators B, 2019, 286, 69.
- 9. J. Wu, J. Pan, J. Ze, L. Zeng and D. Su, Sens. Actuators B, 2018, 274, 274.
- S. Paul, R. Nandi, K. Ghoshal, M. Bhattacharyya and D. Maiti, *New J. Chem.*, 2019, 43, 3303.
- 11. X. Shi, F. Huo, J. Chao, Y. Zhang and C. Yin, New J. Chem., 2019, 43, 10025.
- 12. F. H. A. Ali, N. Taye, D. G. Mogare, S. Chattopadhyay and A. Das, *Chem. Commun.*, 2016, **52**, 6166.
- L. Wang, F.-Y. Liu, H.-Y. Liu, Y.-S. Dong, T.-Q. Liu, J.-F. Liu, Y.-W. Yao and X.-J. Wan, Sens. Actuators B, 2016, 229, 441.
- 14. W.-D. Wang, Y. Hu, Q. Li and S.-L. Hu, Inorg. Chim. Acta, 2018, 477, 206.

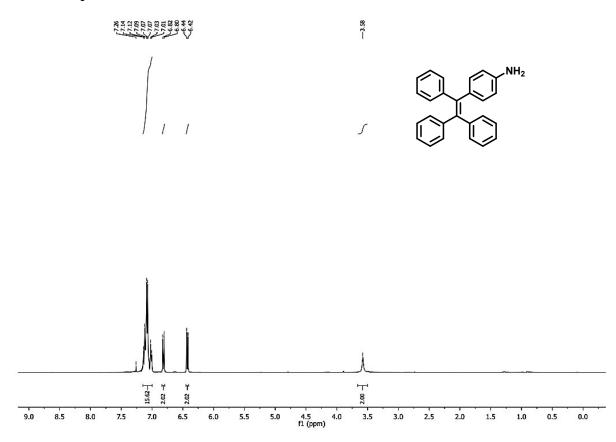

# <sup>1</sup>H NMR spectrum of TPE-PMI



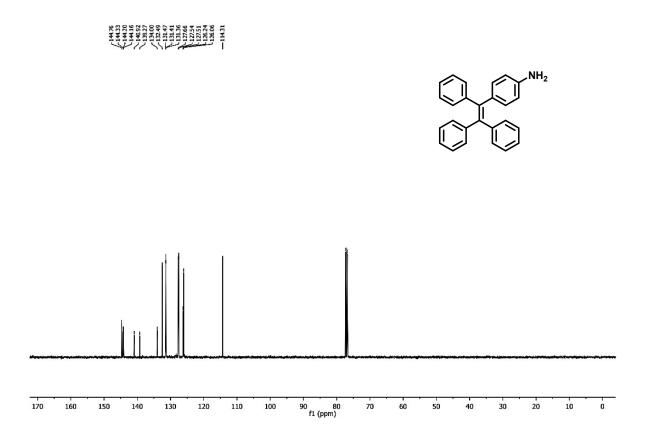
# <sup>13</sup>C NMR spectrum of TPE-PMI




## **HRMS of TPE-PMI**




| m/z      | Calc m/z | Diff(ppm) | iff(ppm) z |           | Formula   | Ion    |  |
|----------|----------|-----------|------------|-----------|-----------|--------|--|
| 477.1677 | 477.1723 | 9.62      | 1          | 28294.27  | C34H23NO2 | M+     |  |
| 478.1754 | 478.1802 | 9.85      | 1          | 106468.26 | C34H23NO2 | (M+H)+ |  |
| 479.1788 | 479.1835 | 9.71      | 1          | 36869.72  | C34H23NO2 | (M+H)+ |  |
| 480.1836 | 480.1867 | 6.28      | 1          | 7980.82   | C34H23NO2 | (M+H)+ |  |
| 481.1906 | 481.1897 | -1.91     | 1          | 1567.28   | C34H23NO2 | (M+H)+ |  |


**IR spectrum of TPE-PMI** 



<sup>1</sup>H NMR spectrum of TPE-NH<sub>2</sub>



<sup>13</sup>C NMR spectrum of TPE-NH<sub>2</sub>

