Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Sensor Behavior of MoS₂ Field Effect Transistor with UV/Vis Light Injection Toward Chemical Recognition

Md Iftekharul Alam¹, Tsuyoshi Takaoka², Hiroki Waizumi¹, Yudai Tanaka¹, Muhammad Shamim Al Mamun¹, Atsushi Ando³ and Tadahiro Komeda²

¹Faculty of Science, Tohoku University, Japan ²IMRAM, Tohoku University, Japan ³National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono,

Tsukuba, Ibaraki, 305-8568

E-mail: Tsuyoshi Takaoka: <u>tsuyoshi.takaoka.b1@tohoku.ac.jp</u>, Tadahiro Komeda: <u>tadahiro.komeda.a1@tohoku.ac.jp</u>

S1. Process flow of FET device fabrication

Small piece of commercially available MoS_2 crystal was chosen and highly doped silicon (p++ Si) wafer with 300 nm SiO₂ thermal oxidation layer was used to transfer the desired flakes using mechanical exploitation process by scotch tape. Before MoS_2 , transfer SiO₂/Si

Figure S1: (a) Flow process of device fabrication with MoS_2 channel material. The length (L) and width (W) of selected MoS_2 flake are 16.05 µm and 3.28 µm, respectively. MoS_2 layer

number was estimated using optical contrast formula and that lies in between $5\sim 6$ (b) Optical image of fabricated MoS₂ FET device.

substrate was properly treated with ethyl alcohol, IPA, and DI water to remove unwanted adsorbates and finally treated with UV/O₃ to remove a variety of contaminants from surfaces, making suitable for MoS₂ transfer. Optical microscope was used to check the layer number by the optical contrast, using $C = (R_0-R)/R_0$ where R_0 and R represent the reflected light intensities from the air/(SiO₂ on Si) and air/MoS₂/SiO₂/Si system, which are wavelength dependent [S1]. Figure S1(a) demonstrates the overall process flow of MoS₂ device fabrication. The MoS₂ pasted SiO₂/Si substrate was prepared for a methyl methacrylate (MMA) and polymethyl methacrylate (PMMA) bilayer resist process, using spin coater. Afterwards, electron-beam lithography (EBL) was used to pattern source (S) and drain (D) electrodes on selected MoS₂ flakes with different channel length. Moreover, the S/D patterned substrate was then placed in spin coater with MMA and PMMA under a baking temperature at 180 °C for 2 min for all steps. Source and drain (S/D) electrodes were created using electron beam lithography and 10nm Ti incorporated with 150 nm Au was deposited in an eb- evaporator. Source/drain(S/D) electrodes were visible after standard lift-off process in acetone. Finally, MoS₂ FET is appeared that has been shown in Figure S1 (b).

S2. Preparation of device and light source for vacuum measurement

The fabricated MoS_2 FET was then prepared for vacuum observation. Figure S2 (a) shows multiple steps of FET arrangement compatible under vacuum investigation that can be categorized as following. Firstly, a copper epoxy sheet was designed including source (S), drain (D) and gate (G) connection according to our FET device holder. Secondly, H21D conductive glue was used to fix the FET device on the middle of gate connection with proper procurement. Thirdly, source and drain connections were executed by using a wire bonder machine where aluminum wires with a diameter of 0.025 mm were used from the source and drain electrodes respectively and electrical properties were studied in air after inserting in device holder finally. Note that, transfer characteristics ($I_{DS}-V_g$) for both before and after wire were almost identical, was also observed. The chamber was next prepared to make it vacuum by proper pumping followed by short baking for about 6 hours and the UHV pressure was recorded as 3×10^{-6} Pa. The device was later introduced to light after conforming the stable

Figure S2: (a) An image of copper epoxy sheet including source, drain and gate connection where FET device was fixed on the top of gate connection. The source and drain connections were attached to respective positions using aluminum wires (b) Schematic of overall light injection procedures used in our studies.

 $I_{DS}-V_g$ characteristics under cooled vacuum chamber. The overall light injection procedure has been demonstrated in Figure S2 (b). Light was injected through a monochromatic light source by an optical fiber that was directed on to an optical lens. A mechanical chopper having a hole to introduce light, was attached in between optical fiber and optical lens. The light is injected through the hole with a 4s interval i.e. to complete the rotation of chopper to

S3. Control experiment of a sample without MoS₂ channel

There is a possibility that the feature characterized by the position of 710 nm is assigned to the absorption in the CuPc adlayer only without MoS_2 layers. It has been reported that CuPc film works as an FET after deposited on SiO₂ surface with source and drain electrodes. Then, we measured the electric properties of the CuPc film deposited on the SiO₂ surface with source and drain electrodes. The results are shown in figure S3. The figure shows time-dependent drain current plots during the injection of light for the wavelength of 600 nm for (a) CuPc(10 Å) /SiO₂ (blue line), and (b) CuPc(10 Å) /MoS₂/SiO₂ (red line). The figure shows that the magnitude of the photocurrent for the CuPc(10 Å) /SiO₂ sample without MoS2 layers is below the detection limit.

In addition, we obtained XPS spectra to confirm the existence of CuPc on both CuPc(10Å) /SiO₂ surface and CuPc(10Å) /MoS₂/SiO₂ surface. Figure S3 (b) show the XPS

spectra in the range corresponding to Mo3d and Cu2p for (a) SiO2 surface, (b) CuPc(10Å) /SiO₂ (blue line), and (c) CuPc(10Å) /MoS₂/SiO₂ surface. As shown here, it is confirmed that CuPc exists on both CuPc(10Å) /SiO₂ surface and CuPc(10Å) /MoS₂/SiO2 surface. Therefore, we conclude that the fourth Gaussian peak at 710 nm shown in Figure 6(b), (c) appears from the CuPc adsorbed on MoS₂ surface, not from the CuPc without MoS₂ surface.

