Supplementary Information

Selective Removal of Toxic Organic Dyes Using Tröger Base-Containing Sulfone Copolymers Made from a Metal-Free Thiol-Yne Click Reaction Followed by Oxidation

Noorullah Baig^{a,b}, Suchetha Shetty^{a,b}, Moustafa Sherief Moustafa^c, Saleh Al-Mousawi^{*c}, Bassam Alameddine^{*a,b}

^a Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Kuwait.

^b Functional Materials Group – CAMB, GUST, Kuwait.

^c Department of Chemistry, University of Kuwait, Kuwait.

Tel: +965 2530 7476.

E-mail address: alameddine.b@gust.edu.kw

Contents

Synthetic methods	i-iii
¹ H NMR spectrum of TB-S, TCP1-6	Figure S1-S7
¹³ C NMR spectrum of TB-S, TCP1-3	Figure S8-S11
GPC Chromatogram of TCP1-3	Figure S12-S14
EI-HRMS of TB-S & TB-SO2	Figure S15- S16
FTIR of TB-S & TB-SO2	Figure S17
FTIR of TCP1,4; TCP3,6	Figure S18, S19
UV-Visible and emission of TCP3,6	Figure S20
Methylene blue (MEB) dye adsorption by TCP1,4	Figure S21
Methylene blue (MEB) dye adsorption by TCP2,5	Figure S22
Summary of dye adsorption by copolymers TCP1-6	Table S1
Comparison of percentage removal of MEB	Table S2
Re-usability of TCP6	Figure S23

*†Corresponding author. *E-mail address*: <u>alameddine.b@gust.edu.kw</u>

i). Synthesis of 2,8-diiodo-4,10-dimethyl-6H,12H-5,11methanodibenzo[b,f][1,5]diazocine:

2-methyl-4-lodoaniline (2.32 g, 1mmol) was dissolved in trifluoroacetic acid (20 ml) and cooled in an ice bath. Dimethoxymethane (2.28 ml, 3 mmol) was added dropwise, and the reaction was stirred for 24 h. The reaction mixture was poured slowly into an aqueous ammonia solution (100 ml) and stirred thoroughly. The resulting precipitate was filtered and washed with water (500ml). The crude product was purified by column chromatography on silica gel with ethyl acetate/ petroleum ether (4:1, v/v) as an eluent to yield a white solid; yield 98%; mp. 218-20 °C; Anal. Calcd for C₁₇H₁₆ I₂N₂: C, 40.66; H, 3.21; N, 5.58; I, 50.55. Found: C, 40.63; H, 3.23; N, 5.57; I, 50.56; EI-HRMS: m/z calculated for (M⁺⁺) C₁₇H₁₆I₂N₂ 501.9396 found 501.9397; ¹H NMR (600 MHz, DMSO-d₆): δ = 7.38 (s, 2H, ArH), 7.16 (s, 2H, ArH), 4.43 (d, 2H, J = 18.0 Hz, methylene-CH), 4.18 (s, 2H, methylene-CH), 3.95 (d, 2H, J = 18.0 Hz, methylene-CH), 2.28 (s, 6H, methyl-CH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 145.4, 137.7, 135.3, 132.8, 130.9, 87.8, 66.4, 53.5,

ii). Synthesis of 4,10-dimethyl-2,8-bis((trimethylsilyl)ethynyl)-6,12-dihydro-5,11methanodibenzo[b,f][1,5]diazocine

А Schlenk tube containing 2,8-diiodo-4,10-dimethyl-6H,12H-5,11methanodibenzo[b,f][1,5]diazocine (5.02 g, 1 mmol), bis(triphenylphosphine)palladium dichloride (0.35 g, 0.03 mmol), copper(I) iodide (0.19 g, 0.1 mmol), anhydrous triethylamine (10 ml) was deoxygenated and backfilled with argon. Then anhydrous toluene (100 ml) was added and backfilled with argon. Finally, under the flow of argon, trimethylsilylacetylene (1.068 ml, 1.2 mmol) was added drop wise and the mixture was stirred at room temperature for 24 hours. The crude product was purified by column chromatography on silica gel with ethyl acetate/ petroleum ether (4:1, v/v) as an eluent to yield a white solid; yield 56%; mp. 177-79 °C; Anal. Calcd. for C₂₇H₃₄N₂Si₂: C, 73.25; H, 7.74; N, 6.33; Si, 12.69. Found: C, 73.27; H, 7.72; N, 6.30; Si, 12.71; EI-HRMS: m/z calculated for (M⁺) C₂₇H₃₄N₂Si₂ 442.2255 found 442.2258; ¹H NMR (600 MHz, DMSO-d₆): δ = 7.12 (s, 2H, ArH), 6.93 (s, 2H, ArH), 4.44 (d, 2H, J = 12.0 Hz, methylene-CH), 4.20 (s, 2H, methylene-CH), 3.97 (d, 2H, J = 12.0 Hz, methylene-CH), 2.29 (s, 6H, methyl-CH), 0.16 (s, 18H, methyl-CH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 146.51, 132.82, 131.52, 128.53, 128.02, 116.78, 105.42, 92.75, 66.69, 53.89, 16.47, 0.07.

iii). Synthesis of 2,8-diethynyl-4,10-dimethyl-6,12-dihydro-5,11methanodibenzo[b,f][1,5]diazocine (3a)

4,10-dimethyl-2,8-bis((trimethylsilyl)ethynyl)-6,12-dihydro-5,11-methanodibenzo[b,f][1,5]diazocine (4.42 g, 1 mmol) was dissolved in methanol (20 ml). Potassium carbonate (5.48 g, 4 mmol) was added, and the reaction mixture was stirred for 24 h. The mixture was poured slowly into ice cold water and stirred thoroughly. The precipitate was collected by filtration and purified by column chromatography on silica gel with ethyl acetate/ petroleum ether (4:1, v/v) as an eluent to yield a white solid; yield 95%; mp. 185-56 °C; Anal. Calcd for C₂₁H₁₈N₂: C, 84.53; H, 6.08; N, 9.39. Found: C, 84.55; H, 6.10; N, 9.39; EI-HRMS: m/z calculated for (M⁻⁺) C₂₁H₁₈N₂ 298.1464 found 298.1465; ¹H NMR (600 MHz, DMSO-d₆): δ = 7.18 (s, 2H, ArH), 6.92 (s, 2H, ArH), 4.54 (d, 2H, J = 18.0 Hz, methylene-CH), 4.27 (s, 2H, methylene-CH), 3.96 (d, 2H, J = 18.0 Hz, methylene-CH), 3.01 (s, 2H, acetylene-CH) 2.36 (s, 6H, methyl-CH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 146.86, 133.26, 132.44, 128.18,116.96, 83.44, 75.95, 67.31, 54.69, 16.64.

Figure S1: ¹H NMR spectrum of TB-S (CD₂Cl₂, 600 MHz)

Figure S2: ¹H NMR spectrum of TCP1 (CD₂Cl₂, 600 MHz)

Figure S3: ¹H NMR spectrum of TCP2 (CD₂Cl₂, 600 MHz)

Figure S4: ¹H NMR spectrum of **TCP3** (DMSO-d₆, 600 MHz)

Figure S5: ¹H NMR spectrum of **TCP4** (DMSO-d₆, 600 MHz)

Figure S6: ¹H NMR spectrum of **TCP5** (DMSO-d₆, 600 MHz)

Figure S7: ¹H NMR spectrum of **TCP6** (DMSO-d₆, 600 MHz)

Figure S8: ¹³C NMR spectrum of TB-S (CD₂Cl₂, 150 MHz)

Figure S9: ¹³C NMR spectrum of TCP1 (CD₂Cl₂, 150 MHz)

Figure S10: ¹³C NMR spectrum of TCP2 (CD₂Cl₂, 150 MHz)

Figure S11: ¹³C NMR spectrum of TCP3 (DMSO-d₆, 150 MHz)

Figure S13: GPC of TCP2

Figure S14: GPC of TCP3

Figure S15: EI-HRMS of TB-S

Figure S16: EI-HRMS of TB-SO2

Figure S17: Comparative FT-IR spectra of TB-S and TB-SO2

Figure S18: Comparative FT-IR spectra of TCP1 and TCP4

Figure S19: Comparative FT-IR spectra of TCP3,6

Figure S20: Normalized UV-VIS absorption ($C_M = 10^{-7}$ M in THF, solid lines) and emission ($C_M = 10^{-8}$ M in THF, dotted lines) spectra of **TCP3,6** (absorption maxima were used as the excitation wavelengths).

Figure S21: Methylene blue (MEB) dye adsorption by TCP1,4 at various time intervals

Figure S22: Methylene blue (MEB) dye adsorption by TCP2,5 at various time intervals

Entry	Adsorbent	Dye	% Adsorption	Time
1	TCP1	CR	27	24 h
2	TCP1	MO	5	24 h
3	TCP1	MB	45	24 h
4	TCP1	MEB	71	30 min
5	TCP1	MEB	92	24 h
6	TCP2	MEB	44	30 min
7	TCP2	MEB	92	24 h
8	TCP3	MEB	25	30 min
9	TCP3	MEB	45	24 h
10	TCP4	MEB	93	30 min
11	TCP4	MEB	100	2 h
12	TCP5	MEB	76	30 min
13	TCP5	MEB	100	4 h
14	TCP6	MEB	84	30 min
15	TCP6	MEB	100	4 h

 Table S1 Summary of dye adsorption by copolymers TCP1-6

Entry	Adsorbent	% Removal	Ref
1	Tröger Base- Containing Sulfone Copolymers	100	This work
2	GO-HBE/PES membrane	85.9	M. Mahmoudian <i>et. al.</i> , <i>Polymer</i> , 2021, 224 , 123693.
3	Chitosan cross- linked graphene oxide/lignosulfonate composite	>99	M. Yan, et. al., International Journal of Biological Macromolecules, 2019, 136 , 927-935.
4	Chitosan-derived three-dimensional porous carbon	>93.4	Q. Jin, <i>et. al., RSC</i> Advances, 2018, 8 , 1255-1264.
5	PSf/GO membrane	84	L. Badrinezhad, S. <i>et.</i> <i>al., Polymer Bulletin,</i> 2018, 75 , 469-484.
6	GO-PDADMC/PSf membrane	63	M. G. Kochameshki, <i>et.</i> <i>al.</i> , <i>Chemical</i> <i>Engineering Journal</i> , 2017, 309 , 206-221.

 Table S2 Comparison of percentage removal of MEB with different adsorbents

Figure S23: Reusability of **TCP6** on Methylene blue (MEB) dye adsorption up to 5 cycles(C1-5): (A) photographs showing the color change up on each cycle (B) UV-Vis spectrum after each cycle