Supplementary Material (ESI)

First-principles study on the electronic and optical properties of Bi₂WO₆

Haseeb Ahmad , Ali Rauf *, Afaq Ahmad , Ata Ulhaq , Shoaib Muhammad

^a Department of physics, Lahore University of Management Sciences, Lahore, Pakistan

^b Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan

^c Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan

	Lattice constants (Å)			Volume (^{Å3})
	а	b	С	V ₀
^{Bi} ₂ ^{WO} ₆ − exp	5.4372	16.4302	5.4584	487.21
<i>Ві₂WО</i> ₆ - РВЕ	5.5532	16.8018	5.5899	521.56
^{Bi} 2 ^{WO} 6 - PBE + SOC	5.56207	16.8863	5.61217	527.1108

Table S1. The lattice constants (Å) and equilibrium volume (Å³) of Bi_2WO_6 . The optimized parameters from PBE and without SOC were selected for further calculations as they are closer to the experimental values.

Bi ₂ WO ₆	Band gap $^{E_{g}}$ (eV)	Nature of the gap
Exp.1	2.80	Indirect
PBE	2.32	Direct
PBE + U	2.71	Direct
PBE + SOC	2.26	Indirect
PBE + U + SOC	2.61	Indirect

Table S2. Band gap comparison of Bi_2WO_6 . All these calculations were performed using PesudoDojo potentials.

Flomont	Туре	Pseudopotential file	Source	Link
Element		name		
	Both, with and without SOC	Bi.upf	PesudoDojo	1
	including Non-Linear Core			
Bi	Correction (NLCC)			
	<mark>Valance: 5d¹⁰6s²6p³</mark>			
	Without SOC and without NLCC	Bi_ONCV_PBE-	SG15 ONCV	2
	<mark>Valance: 5d¹⁰6s²6p³</mark>	1.2.upf		
	Without SOC, without NLCC and	Bi_oncvpsp_sr.upf	Generated using	3
	including Bi 5s and 5p as valance		ONCVPSP code	
	Valance: 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ³			
	With SOC, without NLCC and	Bi_oncvpsp_fr.upf	Generated using	4
	including Bi semi-core (5s and		ONCVPSP code	
	5p) as valance			
	Valance: 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ³			
W	With and without SOC including	W.upf	PesudoDojo	1
	Non-Linear Core Correction			
	(NLCC)			
	Valance: 5d ⁴ 6s ²			
	Without SOC, without NLCC	W_ONCV_PBE-	SG15 ONCV	2
	(including one W semi-core state,	1.2.upf		
	4f as valance)			
	Valance: 4f ¹⁴ 5d ⁴ 6s ²			
	With SOC, without NLCC	W_ONCV_PBE_FR-	SG15 ONCV	2
	(including one W semi-core state,	1.0.upf		
	4f as valance)			
	Valance: 4f ¹⁴ 5d ⁴ 6s ²			
0	With and without SOC including	O.upf	PesudoDojo	1
	Non-Linear Core Correction			
	(NLCC)			
	<mark>Valance: 2s²2p⁴</mark>			
	Without SOC and without NLCC	O_ONCV_PBE-	SG15 ONCV	2
	Valance: 2s ² 2p ⁴	1.2.upf		
	With SOC, without NLCC	O_ONCV_PBE_FR-	SG15 ONCV	2
	Valance: 2s ² 2p ⁴	1.0.upf		

Table S3. List of different pseudopotentials used in this work. The SG15 ONCV and the Bi generated ONCV PP were used in GW and followed by BSE calculations. The rest of the calculations were performed using PesudoDojo potentials. The valance electronic configurations of all the elements involved is also mentioned.

- 1. <u>http://www.pseudo-dojo.org/index.html</u>
- 2. <u>http://www.quantum-simulation.org/potentials/sg15_oncv/</u>
- 3. https://github.com/haseebphysics1/DFT/blob/main/Bi2WO6/PP/Bi_oncvpsp_sr.upf
- 4. https://github.com/haseebphysics1/DFT/blob/main/Bi2WO6/PP/Bi_oncvpsp_fr.upf

Fig S1. The DOS of Bi_2WO_6 , Spin-up (blue) and spin-down (brown). The complete identical DOS confirms that we can avoid spin-polarized (magnetic) calculations.

Fig S2. QP energies vs DFT: QP energies shown are computed at G_0W_0 , G_1W_1 , G_2W_2 levels, while G_3W_3 is not shown being identical to G_2W_2 . The results are for selected bands around Fermi level at a single k-point to check the convergence.

Fig S3. "BSEGexx" named parameter here defines the number of G-vectors to be summed in the exchange part of the BSE kernel. The value of 2 Ry was selected in all further calculations.

Fig S4. The number of reciprocal lattice vector components used in the Screened Coulomb Potential matrix to build the electronhole attractive kernel. 1 Ry value was selected for further calculation for this parameter.

Fig S5. The imaginary part of the dielectric function from BSE calculations (with SOC). Both the calculations were performed under same numerical parameters apart from the number of k-points.

Fig S6. The comparison between TDA vs BSE with coupling between electron-hole. Two curves are almost identical which means TDA works perfectly fine for Bi_2WO_6 .

Fig S7. K-path of the Brillion zone for the orthorhombic unit cell.

Fig S8. Band structure of Bi_2WO_6 without SOC with Hubbard parameters.

Fig S9. Band structure of Bi_2WO_6 with SOC with Hubbard parameters.

Figure S10. Total density of states of Bi2W06 without SOC at PBE level using PseudoDojo potentials. Band gap correction was not taken into account in these results.

Figure S11. Total density of states of Bi2W06 with SOC at PBE level using PseudoDojo potentials. Band gap correction was not taken into account in these results.