Supplementary material

Improvement of low-temperature NH₃-SCR catalytic performance over nitrogen-doped MO_x-Cr₂O₃-La₂O₃/TiO₂-N (M=Cu, Fe, Ce) catalysts

Xiaoyi Sun^a, Qingjie Liu^a, Shuai Liu^a, Xintang Zhang^{*a}, Shanshan Liu^{*a}

^a College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590,

PR China

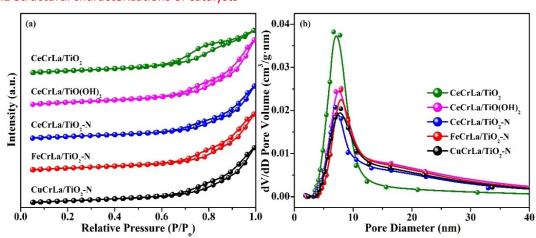
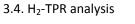



Fig. S1 (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of the samples.

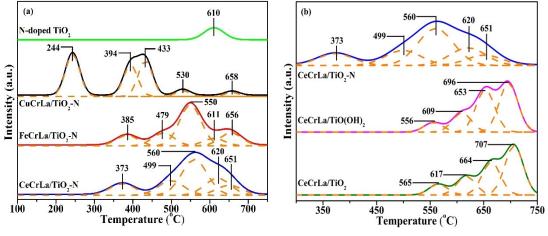


Fig. 5. H₂-TPR profiles of (a) MCrLa/TiO₂-N and (b) CeCrLa/Ti catalysts.

From Fig. 5(a), there are five peaks appear from 200 to 700 $^\circ$ C in the H₂-TPR profile of

Corresponding authors E-mail address: <u>zhangxt966@126.com</u> (X Zhang), <u>skd996368@sdust.edu.cn</u> (S Liu)

MCrLa/TiO₂-N (M=Cu, Fe, Ce). The first peak of CuCrLa/TiO₂-N appeared at 244 °C can be assigned to Cu²⁺ \rightarrow Cu⁺. The peaks located at 350-400 °C could be attributed to Cr⁶⁺ \rightarrow Cr³⁺, the peaks at 430-500 °C referred to Cu⁺ \rightarrow Cu⁰ (CuCrLa/TiO₂-N), Fe³⁺ \rightarrow Fe²⁺ (FeCrLa/TiO₂-N), Ce⁴⁺ \rightarrow Ce³⁺ (CeCrLa/TiO₂-N), the fourth peak (500-600 °C) could be ascribed to Cr³⁺ \rightarrow Cr⁰, the peaks at 600-650 °C might be assigned as Fe²⁺ \rightarrow Fe⁰ (FeCrLa/TiO₂-N), Ce³⁺ \rightarrow Ce⁰ (CeCrLa/TiO₂-N), and the peaks at around 650 °C were attributed to Ti⁴⁺ \rightarrow Ti³⁺.