Supporting Information for

Ruthenium complexes of sterically-hindered pentaarylcyclopentadienyl ligands

Ryosuke Asato,^{a,b} Colin J. Martin,^b Yohan Gisbert,^c Seifallah Abid,^c Tsuyoshi Kawai,^{a,b} Claire Kammerer^c and Gwénaël Rapenne*^{a,b,c}

[a] Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan

[b] International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France

[c] CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055 Toulouse, France

*E-mail; gwenael-rapenne@ms.naist.jp

TABLE OF CONTENTS

I. ¹ H NMR AND ¹³ C NMR SPECTRA OF	
1. CpOHAr2	
2. CpBrAr2	
3. CpClAr1	
4. CpClAr2	
5. CpClAr3	
6. RuCpBrAr1	
7. RuCpBrAr3	
8. RuCpClAr1	
9. RuCpClAr3	
II. MS DATA OF	
1. CpOHAr2	
2. CpBrAr2	
3. CpBrAr4	
4. CpClAr1	
5. CpClAr2	
6. CpClAr3	
7. RuCpBrAr1	
8. RuCpBrAr3	
9. RuCpClAr1	
10. RuCpClAr3	

I. ¹H and ¹³C NMR spectra of compound

1. CpOHAr2

Fig. S1. ¹H NMR (300 MHz, (CD₃)₂SO, 25°C) of **CpOHAr2**

Fig. S2. ¹³C-Jmod NMR (75 MHz, CD₂Cl₂, 25°C) of CpOHAr2

Fig. S3. ¹H-NMR (300 MHz, CD₂Cl₂, 25°C) of CpBrAr2, as a 66:30:4 mixture of three regioisomers

Fig. S4. ¹³C-Jmod NMR (75 MHz, CD₂Cl₂, 25°C) of CpBrAr2, as a 66:30:4 mixture of three regioisomers

3.CpClAr1

Fig. S5. ¹H-NMR (300 MHz, CD₂Cl₂, 25°C) of CpClAr1 as a 46:34:20 mixture of three regioisomers

Fig. S6. ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 25°C) of **CpClAr1** as a 46:34:20 mixture of three regioisomers

Fig. S7. ¹H NMR (500 MHz, CD₂Cl₂, 25°C) of CpClAr2, as a 57:37:6 mixture of three regioisomers

Fig. S8. ¹³C-Jmod NMR (126 MHz, CD₂Cl₂, 25°C) of CpClAr2, as a 57:37:6 mixture of three regioisomers

Fig. S9. ¹H NMR (600 MHz, (CD₃)₂CO, 25°C) of CpClAr3

6. RuCpBrAr1

Fig. S11. ¹H NMR (600 MHz, CD_2CI_2 , 25°C) of RuCpBrAr1

Fig. S12. ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 25°C) of RuCpBrAr1

7. RuCpBrAr3

Fig. S13. ¹H NMR (500 MHz, (CD₃)₂CO, 25°C) of **RuCpBrAr3**

Fig. S14. ¹³C{¹H} NMR (126 MHz, (CD₃)₂CO, 25°C) of RuCpBrAr3

Fig. S15. ¹H-NMR (600 MHz, CD₂Cl₂, 25°C) of **RuCpClAr1**

Fig. S16. ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 25°C) of RuCpClAr1

Fig. S17. ¹H NMR (500 MHz, (CD₃)₂CO, 25°C) of RuCpClAr3

Fig. S18. ¹³C{¹H} NMR (126 MHz, (CD₃)₂CO, 25°C) of RuCpClAr3

II. HR-MS OF 1. CpOHAr2

Fig. S19. HR-MS (DCI-CH₄) data for compound CpOHAr2

Fig. S20. HR-MS (ESI+) data for compound CpBrAr2

Fig. S21. MS (DCI-CH₄) data for compound CpBrAr4, obtained as a mixture with CpClAr4 and CpHAr4

Fig. S22. HR-MS (Spiral-TOF) DCTB+TFANa+PEG data for compound CpClAr1

Mass

Calc. Mass

483.1642 483.1628

nDa

1.4

PPM

2.9

Fig. S23. HR-MS (DCI-CH₄) data for compound CpClAr2

i-FIT

376.8

DBE

22.5

Fig. S24. HR-MS (MALDI-TOF) DCTB+TFANa (with PEG for the HR) data for compound CpClAr3

7. RuCpBrAr1

Fig. S25. HR-MS (ESI⁺) data for compound RuCpBrAr1

Fig. S26. HR-MS (ESI⁺) data for compound RuCpBrAr3

Fig. S27. HR-MS (ESI⁺) data for compound RuCpClAr1

