Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Data

Table S1. Chemical structures for the data set of 67 compounds with corresponding *p*IC₅₀ values.

Compound	Structure	IC ₅₀	pIC ₅₀	Predicted activity	Residual Factor	References
		(µM)				
^t 1	O O O O H H	0.005	8.30103	7.60352	-0.697507	J. Levin, et al., 2001;
2	O O O O O O O O O O O O O O O O NH O O NH O Br	0.024	7.619789	7.70339	0.0835988	J. Levin, et al., 2001;
t3	O O O O O O O O O O O O O O O O O O O	0.015	7.823909	7.68744	-0.136468	J. Levin, et al., 2001;

4	O O O O O O O O O O O O O O O O O O O	0.003	8.522879	8.5737	0.0508204	J. Levin, et al., 2001;
5	H H H H H H H H H H H H H H H H H H H	0.001	9	8.78496	-0.215042	J. Levin, et al., 2001;
6		0.002	8.69897	8.80159	0.102623	J. Levin, et al., 2001;
t7	O O O O O O O O O O O O O N O O N O O N H O O N H O O N H O O N H	0.005	8.30103	8.35062	0.0495947	J. Levin, et al., 2001;

^t 8		0.002	8.69897	7.99622	-0.70275	J. Levin, et al., 2001;
9	O O O O N O S S O N N O S N H	0.007	8.154902	8.19562	0.0407221	J. Levin, et al., 2001;
10		0.008	8.09691	7.82786	-0.269048	J. Levin, et al., 2001;

15	Br	0.125	6.90309	6.9712	0.0681133	J. Levin, et
	о					al., 2001;
16		0.007	8 15/002	8 11264	0.042267	I Levin et
10		0.007	0.154702	0.11204	-0.042207	J. Levin, et
	HZ O O S O S O S O					al., 2001;
^t 17	0	0.153	6.815309	6.63392	-0.181385	J. Levin, et
						al., 2001;

^t 27		0.09434	7.025304	7.09946	0.0741556	Omar et
	N _N _H NH ₂					al., 2020
¹ 28	Br NNN NH2	0.10917	6.961897	6.95577	-0.00612625	Omar et al., 2020
29	N ^{-N} , S CH ₃	0.35890	6.445027	6.68998	0.24495	Omar et al., 2020
¹ 30	$\begin{array}{c} HO \\ HO \\ O \\ \end{array} \\ N \\ N \\ H \\ S \\ O \\ \end{array} \\ CH_3 \\ CH_3 \\ O \\ O \\ H \\ S \\ O \\ O \\ O \\ \end{array} \\ \left(H_3 \\ H \\ S \\ O \\ O \\ O \\ O \\ H \\ S \\ O \\ O$	0.02093	7.679231	7.32964	-0.349596	Omar et al., 2020
31	HN S O	0.02877	7.54106	7.40491	-0.13615	Omar et al., 2020

32		0.13807	6.859901	6.81372	-0.0461788	Omar et al., 2020
	N _N S _{CH3}					
33	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	0.13792	6.860373	6.94409	0.0837131	Omar et al., 2020
34	$H_{2}N$ $H_{2}N$ $H_{2}N$ H_{3} $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N$ H_{3} $H_{2}N$ H_{3} $H_{2}N$ H_{3} $H_{2}N$ H_{3}	0.03860	7.413413	7.44445	0.0310361	Omar et al., 2020
35	$HN + NH_2$ $HO + N + NH_2$ $HO + N + N + CH_3$ CH_3	0.06233	7.205303	-	-	Omar et al., 2020
36	HN S N-NH N-NH OH H ₂ N	0.08605	7.065249	7.25206	0.186812	Omar et al., 2020

37	HN	0.05687	7.245117	7.37439	0.129269	Omar et
	N-N-N-NH N-CH ₃ CH ₃					al., 2020
38	$\begin{array}{c} Br \\ H_{3}C \\ $	0.06433	7.191586	7.45972	0.268132	Omar et al., 2020
39	HO HO HO	0.00714	8.146302	7.9581	-0.188206	Shi et al., 2012
40	HO HO HO	0.00725	8.139662	-	-	Shi et al., 2012
^t 41	HO HO HO	0.00728	8.137869	7.6597	-0.478091	Shi et al., 2012
^t 42	HO HO HO	0.00528	8.277366	7.83931	-0.438057	Shi et al., 2012

43	HO N HO OH	1.64227	5.784555	6.4691	0.684549	Shi et al., 2012
t44	HO H	0.00235	8.628932	7.90856	-0.720371	Shi et al., 2012
45	HO HO HO CH ₃	0.00567	8.246417	8.51253	0.266114	Shi et al., 2012
46	HO HO HO	1.63242	5.787168	-	-	Shi et al., 2012
47	HO HO HO	0.00333	8.477556	8.57493	0.0973757	Shi et al., 2012
48	HO HO HO CH ₃	0.00591	8.228413	7.23113	-0.997286	Shi et al., 2012

^t 49	HO HO HO	1.75385	5.756008	6.56691	0.180902	Shi et al., 2012
^t 50	HO HO HO	0.00364	8.438899	8.13051	-0.308392	Shi et al., 2012
51	HO HO HO	0.00781	8.107349	8.18479	0.0774371	Shi et al., 2012
52	HO HO HO	1.86959	5.728254	-	-	Shi et al., 2012
53	HO HO	0.00729	8.137272	7.07264	-1.06464	Shi et al., 2012
54	HO HO HO	0.00819	8.086716	8.28299	-0.196272	Shi et al., 2012

55	HO HO HO	1.92113	5.716443	6.55879	0.842346	Shi et al., 2012
56	HO HO	0.00789	8.102923	8.1758	0.072873	Shi et al., 2012
57		2.1	5.677781	5.6568	-0.0209825	C. Chen et al., 2019
58	CI N OH HN OH	3.5	5.455932	5.20299	-0.252947	C. Chen et al., 2019
¹ 59	CI H N OH	3.2	5.49485	5.71479	0.219938	C. Chen et al., 2019

60	СІ	3.6	5.443697	5.35485	-0.0888422	C. Chen et al., 2019
^t 61		0.66	6.180456	6.38792	0.207467	C. Chen et al., 2019
62		1.3	5.886057	5.75928	-0.12678	C. Chen et al., 2019
63		3.1	5.508638	-	-	C. Chen et al., 2019

t: test ligands

Site1	Site2	Site3	Angles
			(Å)
H9	R13	R14	68.0
H9	D7	R14	37.4
D8	R13	H9	21.8
D8	D7	R14	58.8
R13	D8	R14	34.7
H9	D7	R14	83.7

 Table S2a. Angles between different sites of model DDHRR_1.

 Table S2b. Distances between different sites of model DDHRR_1.

Site 1	Site 2	Distance
		(Å)
H9	R13	2.89
R13	R14	6.19
D8	H9	5.85
D7	D8	2.09
R14	D7	4.70
R14	D8	4.93
H8	D7	7.69

D8	R13	3.53
H8	R14	6.67

Table S3. Results of Y-Scrambling method

Model	R	R ²
Original	0.504724	0.254747
Random 1	0.324377	0.10522
Random 2	0.417006	0.173894
Random 3	0.285357	0.081428
Random 4	0.306254	0.093791
Random 5	0.27919	0.077947
Random 6	0.226197	0.051165
Random 7	0.162422	0.026381
Random 8	0.396729	0.157394
Random 9	0.176174	0.031037
Random 10	0.334835	0.112115

Random Model Parameters

Average r: 0.290854

Average r²: 0.091037 Average Q²: -0.18697 cRp²: 0.208195

Table S4. Results of Xternal Validation Plus 1.1 tool using mean absolute error-based criteria.

User Input File	File Name	Values
Information		
Model biasness test	nPE/nNE	1.7632
	nNE/nPE	0.5672
	MPE/MNE	1.1445
	MNE/MPE	0.8738
	AAE- AE	0.2669
	\mathbb{R}^2	0.8936
Error-based metric	MAE (95%	0.3734
(after removing 5%	data)	
data with high	MAE+3×SD	1.1394
residues)	(95% data)	
Threshold values	0.1×training set	0.7820
utilized to judge the	range	
model predictions		
	0.15×training set	1.1729

	range	
	0.2×training set	1.5639
	range	
	0.25×training set	1.9549
	range	
Result (MAE-based	Prediction	GOOD
criteria applied on 95	quality	
% data)		

Table S5. Molecular docking results (kcal/mol) of phase data set ligands 1-67 showing interacting amino acids.

S. No	^a Gscore	^b GvdW	^c Genergy	dGemodel	^e Gecolumb
1	-4.493	-35.663	-41.291	-48.185	-5.628
2	-6.087	-41.593	-46.242	-67.45	-4.649
3	-4.779	-34.092	-41.765	-55.184	-7.673
4	-4.389	-39.805	-46.79	-61.051	-6.985
5	-8.414	-43.328	-51.7	-72.803	-8.373
6	-5.401	-49.594	-53.257	-74.4	-3.663
7	-4.389	-36.927	-41.84	-55.63	-4.913
8	-2.791	-41.163	-46.258	-60.254	-5.096
9	-4.132	-34.412	-40.397	-52.98	-5.985
10	-3.526	-36.049	-45.256	-60.5	-9.207

11 -4.751 -44.741 -45.189 -65.173 12 -7.195 -44.505 -55.486 -82.218 13 -6.799 -52.335 -60.828 -94.659 14 -7.265 -45.047 -55.406 -78.652 15 -6.312 -57.287 -64.482 -73.201	-0.448
12 -7.195 -44.505 -55.486 -82.218 13 -6.799 -52.335 -60.828 -94.659 14 -7.265 -45.047 -55.406 -78.652 15 -6.312 -57.287 -64.482 -73.201	
13 -6.799 -52.335 -60.828 -94.659 14 -7.265 -45.047 -55.406 -78.652 15 -6.312 -57.287 -64.482 -73.201	-10.981
14 -7.265 -45.047 -55.406 -78.652 15 -6.312 -57.287 -64.482 -73.201	-8.493
15 -6.312 -57.287 -64.482 -73.201	-10.359
	-7.195
16 -5.912 -50.396 -57.617 -83.664	-7.222
17 -6.166 -52.536 -61.48 -88.346	-8.944
18 -5.095 -52.904 -59.001 -81.513	-6.098
19 -6.787 -53.252 -58.153 -82.969	-4.9
20 -7.343 -54.414 -56.25 -80.945	-1.836
21 -5.936 -52.24 -61.083 -96.14	-8.844
22 -4.584 -54.017 -64.018 -95.315	-10.001
23 -3.851 -56.463 -65.78 -98.708	-9.318
24 -6.563 -33.545 -38.952 -48.513	-5.407
25 -7.532 -34.057 -43.193 -59.701	-9.136
26 -5.5 -29.901 -36.838 -51.539	-6.937
27 -7.702 -41.849 -45.831 -69.613	-3.982
28 -5.954 -34.965 -39.445 -41.239	-4.481
29 -6.846 -46.413 -48.655 -68.093	-2.242
30 -7.682 -48.108 -52.637 -68.972	-4.53
31 -7.761 -37.77 -45.449 -71.019	-7.679

32	-6.842	-51.294	-53.614	-83.242	-2.32
33	-6.973	-44.881	-48.464	-59.131	-3.583
34	-6.448	-45.367	-51.147	-74.571	-5.78
35	-7.553	-55.159	-59.287	-73.504	-4.128
36	-7.62	-48.417	-54.541	-74.375	-6.124
37	-7.223	-54.469	-56.358	-93.305	-1.889
38	-7.067	-54.874	-59.57	-76.49	-4.697
39	-7.178	-42.102	-44.041	-67.234	-1.939
40	-7.476	-41.425	-44.614	-62.875	-3.189
41	-7.454	-43.286	-48.655	-70.255	-5.37
42	-7.816	-40.961	-47.845	-72.853	-6.884
43	-7.531	-40.808	-48.562	-75.11	-7.754
44	-8.072	-43.635	-51.677	-78.469	-8.042
45	-6.927	-46.31	-48.802	-64.097	-2.492
46	-6.701	-45.752	-48.664	-69.289	-2.913
47	-7.611	-44.315	-49.863	-72.365	-5.548
48	-6.765	-43.78	-46.752	-65.176	-2.972
49	-6.759	-44.079	-46.503	-63.753	-2.424
50	-6.782	-44.506	-46.912	-66.459	-2.405
51	-6.891	-42.269	-44.507	-61.136	-2.238
52	-7.229	-42.317	-44.162	-65.048	-1.846
				· · · · · · · · · · · · · · · · · · ·	

53	-7.016	-43.541	-47.713	-64.85	-4.172
54	-6.979	-45.279	-47.737	-63.676	-2.457
55	-7.301	-45.105	-48.33	-68.302	-3.226
56	-7.036	-45.035	-47.4	-68.71	-2.366
57	-6.84	-42.235	-49.306	-70.372	-7.071
58	-7.507	-45.853	-53.795	-80.82	-7.942
59	-8.023	-44.255	-53.776	-80.301	-9.521
60	-8.504	-46.704	-58.246	-87.615	-11.542
61	-8.33	-51.345	-61.586	-91.363	-10.241
62	-5.16	-38.282	-46.498	-64.594	-8.216
63	-7.175	-45.89	-48.729	-68.25	-2.84
64	-7.629	-43.939	-50.158	-72.322	-6.219
65	-7.108	-46.161	-50.501	-71.562	-4.34
66	-5.072	-26.841	-45.035	-61.459	-5.194
67	-7.749	-52.571	-56.506	-71.758	-3.935

^aglide score; ^bglide Van der Waal; ^cglide energy; ^dglide Emodel: ^eglide Ecolumb.

Table S6. Binding free energy (MM-GBSA) calculation (kcal/mol) of data set ligands 1-67.

S. No	^a AGbind	^b ∆Gcoul	^c ∆Gcov	^c ∆GHbond	d _A Glipo	e∆GsolvGB	f∆Gvdw
1	-53.49	-19.71	11.21	-1.1	-15.94	16.16	-41.6

2	-60.11	-24.26	2.6	-3.11	-16.72	21.41	-38.06
3	-57.42	-30.75	11.19	-2.46	-15.14	24.55	-42.93
4	-79.64	-67.22	15.85	-2.75	-25.23	49.3	-48.34
5	-92.2	-56.01	8.81	-2.81	-24.24	43.22	-61.03
6	-55.88	-23.36	9.49	-1.61	-21.91	34.61	-45.61
7	-68.38	-62.77	11.4	-2.9	-20.76	48.97	-43.29
8	-43.18	-20.38	9.68	-2.05	-19	34.7	-45.38
9	-56.58	-36.83	8.16	-2.43	-17.54	27.06	-31.14
10	-56.07	-29.68	-1.62	-2.95	-12.01	20.83	-30.35
11	-66.39	-14.76	11.63	-2.4	-19.86	13.37	-51.88
12	-68.42	-27.05	14.9	-2.41	-26.21	31.15	-54.2
13	-75.95	-27.03	17.98	-1.43	-30.89	26.73	-57.73
14	-73.12	-20.14	9.53	-2.68	-25.34	24.76	-54.44
15	-87.69	-25.88	5.43	-1.44	-32.2	30.03	-61.62
16	-74.19	-36.21	4.43	-3.44	-22.58	32.65	-47.16
17	-74.58	-10.2	-0.82	-2.74	-22.32	15.22	-51.28
18	-76.46	-37.23	5.09	-2.59	-26.68	34.65	-47.79
19	-76.12	-11.02	10.29	-2.33	-26.48	19.04	-61.4
20	-82.12	-47.98	8.04	-3.79	-28.01	45.45	-55.12
21	-73.34	-33.07	11.38	-1.49	-28.26	33.1	-53.99
22	-75.48	-24.53	7.92	-1.43	-27.22	28.42	-57.27

23	-59.96	-0.8	3.32	-1.89	-18.72	15.9	-54.77
24	56.43	10.22	28	0.43	15.24	18.62	12 77
24	-50.45	-19.55	2.0	-0.43	-13.24	10.02	-42.77
25	-57.81	-37.06	9.08	-3.09	-17.83	30.28	-38.62
26	-50.35	-22.95	2.55	-2.02	-11.24	20.24	-37.09
27	-71.31	-45.56	2.47	-2.77	-24.08	36.33	-36.41
28	-51.03	-14.49	4.35	-1.18	-14.84	20.78	-43.51
29	-63.5	-5.95	6.4	-1.21	-17.81	15.71	-58.99
30	-61.92	-13.67	9.8	-1.08	-18.32	14.85	-51.78
31	-69.54	-57.1	14.58	-3.36	-16.03	32	-39.49
32	-64.85	-11.15	5.42	0.26	-26.68	21.55	-52.5
33	-56.83	-12.27	11.2	-0.9	-19.92	19.44	-52.29
34	-67.88	-15.53	4.92	-1.68	-20.73	5.59	-36.64
35	-66.57	-6.48	14.88	-0.14	-24.71	18.44	-66.3
36	-80.78	-45.16	12.37	-2.42	-25.77	41.47	-60.47
37	-75.33	-16.72	12.61	-1.92	-30.73	25.88	-62.76
38	-81.97	-15.48	10.13	-1.86	-25.21	7.17	-54.91
39	-67.36	-19.01	3.57	-0.52	-26.26	26.76	-50.23
40	-54.54	-18.38	10.51	-0.36	-26.85	27.28	-45.29
41	-66.97	-34.67	2.71	-1.41	-27.41	35.01	-39.62
42	-57.05	-13.89	7.41	-1.25	-25.36	21.71	-45.67
43	-67.58	-59.98	6.66	-1.56	-25.09	55.7	-43.76

44	-72.78	-17.06	4.76	-0.89	-27.94	21.55	-51.73
45	-64.88	-11.91	8.1	-1	-27.96	26.76	-58.1
46	-59.6	-6.22	-2.6	0.49	-27.48	25.64	-48.77
47	-69.38	-29.71	11.61	-0.65	-29.63	31.42	-49.53
48	-63.49	-34.39	11.03	-2.08	-27.26	36.43	-45.02
49	-72.69	-34.96	8.63	-1.16	-28.35	33.15	-48.79
50	-69.8	-21.03	3.77	-0.59	-27.73	29.32	-51.85
51	-60.66	-12.71	3.72	-0.52	-25.88	27.05	-50.98
52	-65.21	-21.74	4.74	-0.98	-27.12	30.31	-49.03
53	-65.12	-5.59	3.99	-0.06	-27.83	17.33	-51.37
54	-60.69	-16.38	6	-0.84	-26.48	28.4	-51.18
55	-67.88	-28.43	4.94	-0.72	-27.6	32.03	-46.73
56	-73.3	-29.17	5.01	-1.03	-27.99	30.03	-48.65
57	-75.4	-29.22	5.01	-1.96	-25.4	25.3	-48.48
58	-67.12	-21.17	11.41	-0.68	-24.95	27.56	-54.82
59	-70.74	-29.72	8.91	-1.79	-25.15	33.16	-53.16
60	-80.37	-44.57	9.85	-3.15	-25.64	39.43	-53.7
61	-80.39	-28.29	8.15	-2.19	-25.79	27.69	-56.98
62	-42.23	-22.74	7.06	-2.37	-16.27	30.71	-35.64
63	-64.96	-19.14	12.19	-2.14	-27.63	29.23	-54.91
64	-47.56	-17.52	3.41	-2.41	-18.8	28.63	-41.43

65	-62.76	-21.2	8.11	-2.06	-23.71	24.32	-48.11
66	-75.51	-38.71	10.06	-1.79	-27.38	39.17	-54.27
67	-62.53	-24.47	8.44	-2.43	-22.32	29.21	-50.62

^aFree energy of binding; ^bCoulomb energy; ^cCovalent energy (internal energy); ^dhydrogen bonding energy; ^ehydrophobic energy (nonpolar contribution estimated by solvent accessible surface area); ^felectrostatic solvation energy; ^gvan der Waals energy.

Table S7. Count and percentage of actives in top N% of decoy results.

% Decoys 1 %		2 % 5 %		10 %	20 %	
# Actives	7	7	7	7	7	
% Actives	70.0	70.0	70.0	70.0	70.0	

Table S8. Count and percentage of actives in top N% of results.

% Results 1 %		2 % 5 %		10 %	20 %	
# Actives	7	7	7	7	7	
% Actives	70.0	70.0	70.0	70.0	70.0	

Table S9. Enrichment Factors with respect to N% sample sizes.

%	1 %	2 %	5 %	10 %	20 %	
Samples						
EF	71	35	14	7	3.5	
EF*	70	35	14	7	3.5	

EF'	1.3e+02	67	27	14	7
EFF	0.972	0.944	0.867	0.75	0.556

EF: Enrichment factor (Number of ranked results for which to calculate the enrichment factor); EF*: Enrichment factor (Number of ranked decoys for which to calculate the enrichment factor); EF': Enrichment factor Prime; EFF: Active recovery Efficiency.

 Table S10. Hydrogen bond occupancy compound 5/5112 complex.

Amino acid	Hydrogen
residue	bond
	occupancy (%)
Tyr179	56%
Leu188	72%
Ala189	79%
His190	46%
His191	49%
Phe192	39%
Glu227	25%

Table S11. Table showing docking results, binding free energy (kcal/mol) and predicted activity of pharmacophore generated virtual hits in thecatalytic pocket of MMP-9 enzyme (PDB:5I12).

Title	Compound	^a Gscore	^b ΔG_{bind}	Predicted	Molecular Properties				
				activity	^c M.W	dSASA	^e DonorHB	^f AcceptHB	^g LogP _{O/W}
CACPD2011a-		-	-68.65	7.963	456.485	766.666	2.000	5.000	5.789
0002144822		10.967							
CACPD2011a-	H /=N	-9.948	-62.97	7.562	283.347	559.609	1.000	4.500	2.969
0000241403	S S S S S S S S S S S S S S S S S S S								

^aglide score; ^bFree energy of binding; ^cM.W: Molecular Weight; ^dSASA: Solvent accessible surface area (300-1000); ^eDonorHB: Total number of hydrogen bonds of the molecules that are to be donated to water molecules of solvent (0.0-6.0); ^fAcceptorHB: Total number of hydrogen bonds of the ligands to be accepted by from the water molecules of solvent (2.0-20.0); ^gQPLogP_{O/W}: Predicted octanol/water partition coefficient (-2 to 6.5).

Figure S1. ROC curve obtained by DDHRR_1 model against randomly curve.

Figure S2. Represents three-dimensional diagram of cocrystal/5I12 complex

Figure S3. Represents superposition of conformations of cocrystal (red) and best XPdocking pose (Green)

Figure S4. Represents three-dimensional diagram of compound 5/5I12 complex

Figure S5. Radius of gyration of (a) Tyr179 (b) Leu187 (c) His190 (d) Phe192 (e) Pro193 5/5112 complex for 100 ns MD simulation trajectory

Figure S6. Represents superposition of 5 snapshots at 10 ns intervals from the 50 ns MD simulation trajectory.

Figure S7. Represents superposition of conformations of inhibitor **5** after MD simulation (Green) and best XP- docking pose (Grey)

Figure S8. Represents superposition of conformations of inhibitor **5** after MD simulation (Green) and pose of the pharmacophore model (Pink)

Figure S9. Represents superposition of conformations of inhibitor **5** best XP- docking pose (Grey) and pose of the pharmacophore model (Pink)

Figure S10. Represents a Kelley penalty plot against number of clusters.

Figure S11. A dendrogram representing merging distances with reference to the cluster indices.

Figure S12. A distance matrix plot showing the dissimilarity between the clusters based on cluster order.

Figure S13. 3-dimensional diagram of virtual hit VH1 pose within the catalytic pocket of 5I12.

Figure S14. 3-dimensional diagram of virtual hit VH2 pose within the catalytic pocket of 5I12.

Figure S15. Represents RMSD (Å) of (**a**) Cα atoms of protein from those in initial structure (**b**) protein backbone from the initial structure of complex VH1/5I12 during MD simulation.

Figure S16. Represents RMSF (Å) of (**a**) C α atoms of protein from those in initial structure (**b**) protein backbone from the initial structure of complex VH1/5I12 during MD simulation.

Figure S17. Represents RMSD (Å) of (a) C α atoms of protein from those in initial structure (b) protein backbone from the initial structure of complex VH2/5I12 during MD simulation.

Figure S18. Represents RMSF (Å) of (a) C α atoms of protein from those in initial structure (b) protein backbone from the initial structure of complex VH2/5I12 during MD simulation.